Lecture 4 Graph Search
Breadth First Search animation Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.)
Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1
Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In breadth first search, i is the first node in LIST LIST 1 next 1
If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next
If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 5 7 3 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 5 3 2 next
If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 5 7 3 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 3 6 4 LIST 1 2 5 3 4 2 3 next
If node i is not incident to an admissible arc… 2 4 2 2 8 1 1 1 1 1 5 5 7 3 9 Delete node i from LIST 3 3 6 4 LIST 1 2 5 3 2 4 3 next
Select Node i 2 4 2 2 2 8 1 1 1 1 1 5 5 7 3 9 The first node on LIST becomes node i 3 3 6 4 LIST 1 2 5 3 2 4 3 next
If node i is incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 4 3 next
If node i is not incident to an admissible arc… 5 2 4 4 2 2 2 2 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next
Select a node 5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 The first node on LIST becomes node i 9 3 3 6 4 LIST 1 2 5 3 4 5 2 3 4 next
If node i is incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 5 7 3 Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) Mark Node j pred(j) := i 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 3 2 4 5 next
If node i is not incident to an admissible arc… 5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 3 2 4 5 next
Select node 3 5 2 4 4 2 2 2 8 1 1 1 5 5 5 5 7 3 node 3 is not incident to any admissible arcs delete node 3 from LIST 9 3 3 3 3 6 6 4 6 LIST 1 2 5 3 4 6 2 3 5 4 6 next
Select a node 5 2 4 4 4 2 2 8 1 1 1 5 5 7 3 i : = 4 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 6 2 3 4 5 next
If node i is incident to an admissible arc… 5 2 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 3 7 2 4 6 5 next
If node i is not incident to an admissible arc… 5 2 4 4 4 4 7 2 2 8 8 1 1 1 5 5 7 3 Delete node i from LIST 9 3 3 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next
Select node i 5 2 4 4 7 2 2 8 8 1 1 1 5 5 7 3 i := 6 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 3 2 6 4 5 next
If node i is incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 3 3 6 6 6 4 6 LIST 1 2 5 3 4 6 8 7 2 8 3 5 6 4 7 next
If node i is incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Select an admissible arc (i,j) Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST 9 9 3 3 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 8 9 2 4 5 3 7 6 next
If node i is not incident to an admissible arc… 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 Delete node i from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 9 8 7 5 6 2 3 4 next
Select node 8 5 2 4 4 7 2 2 8 8 8 8 1 8 1 1 5 5 7 7 3 node 8 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next
Select node 7 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 7 7 3 node 7 is not incident to an admissible arc; delete it from LIST 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next
Select node 9 5 2 4 4 7 2 2 8 8 1 8 1 1 5 5 7 7 3 node 9 is not incident to an admissible arc; delete it from LIST 9 9 9 9 3 3 6 6 6 6 4 9 6 LIST 1 2 5 3 4 6 8 7 9 3 9 2 8 6 4 7 5 next
5
Determine the connected components of a network; Summary Find the shortest path from s to each other node path length = number of arcs on path; Determine the connected components of a network; Determine breadth first search.
Next Determine depth first search; Shows up in other algorithms as well. Determine topological sort; Running time is O(n+m) using simple data structures and algorithms. Very important for preprocessing.
Depth First Search animation Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.)
Initialize 1 2 4 5 3 6 9 7 8 1 2 4 5 3 6 9 7 8 1 1 pred(1) = 0 next := 1 order(next) = 1 LIST:= {1} Unmark all nodes in N; Mark node s LIST 1 next 1
Select a node i in LIST 1 2 4 5 3 6 9 7 8 1 1 1 In depth first search, i is the last node in LIST LIST 1 next 1
If node i is incident to an admissible arc… 2 4 2 2 8 1 1 1 1 5 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 3 6 LIST 1 2 2 1 next
Select the last node on LIST 2 4 2 2 2 8 1 1 1 1 1 5 7 9 3 6 Node 2 gets selected LIST 1 2 2 1 next
If node i is incident to an admissible arc… 2 4 4 2 2 2 3 8 1 1 1 1 1 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 LIST 1 2 4 3 2 1 next
Select 2 4 4 4 2 2 2 2 3 8 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 2 3 1 next
If node i is incident to an admissible arc… 2 4 4 4 2 2 2 2 3 8 8 4 1 1 1 1 1 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 3 6 LIST 1 2 4 8 3 4 2 1 next
Select 2 4 4 4 2 2 2 2 3 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 3 2 1 4 next
If node i is not incident to an admissible arc… 2 4 4 4 2 2 2 2 3 8 8 8 8 4 Delete node i from LIST 1 1 1 1 1 5 7 9 3 6 LIST 1 2 4 8 1 4 3 2 next
Select 2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 1 1 1 1 1 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 1 4 2 3 next
If node i is incident to an admissible arc… 2 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 7 Mark Node j pred(j) := i Next := Next + 1 order(j) := next add j to LIST Select an admissible arc (i,j) 9 3 6 LIST 1 2 4 5 8 1 5 2 4 3 next
Select 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select the last node on LIST 9 3 6 LIST 1 2 4 8 5 1 2 5 3 4 next
If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 3 6 6 6 LIST 1 2 4 8 5 6 6 3 4 2 5 1 next
Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 6 9 3 6 6 6 6 LIST 1 2 4 8 5 6 3 4 6 5 1 2 next
If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Mark Node j pred(j) := i Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST 9 9 3 6 6 6 7 6 LIST 1 2 4 5 8 6 9 1 7 2 4 5 3 6 next
Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 1 1 1 1 5 5 5 5 7 Select node 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 1 2 4 6 5 3 next
If node i is incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 Select an admissible arc (i,j) Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 8 4 3 1 6 2 5 7 next
Select the last node on LIST 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 Select node 7 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 8 1 6 2 3 5 7 next
If node i is not incident to an admissible arc… 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 7 from LIST 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 1 2 8 4 6 3 7 5 next
Select node 9 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 Delete node 9 from LIST But node 9 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 8 4 2 1 7 3 5 6 next
Select node 6 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 7 7 7 7 But node 6 is not incident to an admissible arc. Delete node 6 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 4 3 2 6 7 8 1 5 next
Select node 5 2 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 5 is not incident to an admissible arc. Delete node 5 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 8 5 6 9 7 3 2 1 4 5 6 8 7 next
Select node 4 2 4 4 4 4 4 4 4 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 4 from LIST But node 4 is not incident to an admissible arc. 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 7 1 2 5 8 4 6 3 next
Select node 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 5 5 5 5 5 5 7 7 7 7 But node 2 is not incident to an admissible arc. Delete node 2 from LIST 9 9 9 9 9 9 3 6 6 6 6 6 6 7 6 LIST 1 2 4 5 8 6 9 7 6 3 1 4 5 7 2 8 next
Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Next := Next + 1 order(j) := next add j to LIST Mark Node j pred(j) := i Select an admissible arc (i,j) 9 9 9 9 9 9 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 8 5 6 9 7 2 6 9 7 3 8 5 1 4 next
Select node 3 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 3 from LIST But node 3 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 3 2 4 5 8 6 9 7 9 8 5 3 4 2 1 7 6 next
Select node 1 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 Delete node 1 from LIST But node 1 is not incident to an admissible arc. 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 8 5 6 9 7 9 5 2 1 3 4 7 6 8 next
LIST is empty 2 4 4 4 4 4 4 4 2 2 2 2 2 2 3 8 8 8 8 4 5 1 8 1 1 1 1 1 1 1 1 5 5 5 5 5 5 7 7 7 7 The algorithm ends! 9 9 9 9 9 9 3 3 3 3 6 6 6 6 6 6 7 9 6 LIST 1 2 3 4 5 8 6 9 7 9 4 5 3 6 2 1 7 8 next
The depth first search tree 1 3 2 9 8 7 5 4 6 Note that each induced subtree has consecutively labeled nodes
Topological Ordering animation Get ahold of a network, and use the same network to illustrate the shortest path problem for communication newtorks, the max flow problem, the minimum cost flow problem, and the multicommodity flow problem. This will be a very efficient way of introducing the four problems. (Perhaps under 10 minutes of class time.)
Initialization 6 1 Determine the indegree of each node LIST is the set of nodes with indegree of 0. “Next” will be the label of nodes in the topological order. 5 2 8 3 7 4 next 1 2 3 4 5 6 7 8 Node Indegree LIST 7
Select a node from LIST 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 5 2 8 3 7 7 4 1 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 3 2 1 1 1 2 7 5
Select a node from LIST 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 1 2 next 1 2 3 4 5 6 7 8 Node LIST Indegree 2 2 1 3 2 1 1 1 2 4 5 7 6
Select a node from LIST 3 6 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 8 3 7 7 4 1 2 1 3 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 1 2 1 1 2 4 5 7 2 6
Select a node from LIST 3 6 6 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 4 3 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 1 2 4 7 5 6 2 1
Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 1 3 5 2 4 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 2 1 1 1 2 1 4 7 5 1 2 6
Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 2 5 5 2 2 8 3 4 7 7 4 4 1 6 6 3 5 4 2 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 3 2 1 1 2 1 1 2 1 2 1 4 6 7 5 8
Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 7 2 5 5 2 2 8 8 3 4 7 7 4 4 1 6 2 7 4 5 3 6 1 next 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 1 2 2 3 1 1 2 1 1 1 2 8 3
Select a node from LIST 5 3 6 6 1 1 next := next +1 order(i) := next; update indegrees update LIST Select a node from LIST and delete it. 7 8 2 5 5 2 2 8 8 3 3 4 7 7 4 4 1 6 2 5 8 6 7 3 1 4 next List is empty. The algorithm terminates with a topological order of the nodes 1 2 3 4 5 6 7 8 Node LIST Indegree 1 2 2 1 2 1 3 1 2 1 1 2 1 3