Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 

Slides:



Advertisements
Similar presentations
The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2−  Jatta E. Kurkijärvi, Mikko J. Nissi,
Advertisements

T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
Early intervention with Interleukin-1 Receptor Antagonist Protein modulates catabolic microRNA and mRNA expression in cartilage after impact injury  A.A.
Adiabatic rotating frame relaxation of MRI reveals early cartilage degeneration in a rabbit model of anterior cruciate ligament transection  J. Rautiainen,
Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen- induced arthritis in mice  G.M. Campo, Ph.D., A. Avenoso, Ph.D.,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Chondroitin sulphate: an effective joint lubricant?
Diffusion of Gd-DTPA2− into articular cartilage
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
J. Rautiainen, M. T. Nieminen, E. -N. Salo, H. T. Kokkonen, S
Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis  G.-H Yuan, M.D., Ph.D., M Tanaka, V.M.D., K Masuko-Hongo,
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions  A. Abazari, J.A.W.
Osteoarthritis and Cartilage
Differential accumulation of lead and zinc in double-tidemarks of articular cartilage  A. Roschger, J.G. Hofstaetter, B. Pemmer, N. Zoeger, P. Wobrauschek,
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Different effects of high molecular weight sodium hyaluronate and NSAID on the progression of the cartilage degeneration in rabbit OA model  M. Mihara,
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Osteoarthritis and Cartilage
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Delivery of agents into articular cartilage by laser-ultrasound
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
B. Kaleem, F. Maier, H. Drissi, D.M. Pierce 
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
H. J. Nieminen, T. Ylitalo, S. Kauppinen, E. Hæggström, M. Finnilä, S
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Stem cell therapy for human cartilage defects: a systematic review
J. Ranstam  Osteoarthritis and Cartilage 
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration  E. Lammentausta, M.Sc., P. Kiviranta, B.M.,
Osteoarthritis and Cartilage
Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transection in rabbits  T. Matsuhashi, M.D., N.
K. Rahunen, L. Rieppo, P. Lehenkari, M. Finnilä, S. Saarakkala 
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
J. A. Martin, A. Martini, A. Molinari, W. Morgan, W. Ramalingam, J. A
Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal  P.H. Puhakka, N.C.R. te Moller, I.O.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces  E. Teeple, M.D., B.C. Fleming, Ph.D.,
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
In vitro method for 3D morphometry of human articular cartilage chondrons based on micro-computed tomography  I. Kestilä, J. Thevenot, M.A. Finnilä, S.S.
Osteoarthritis year 2012 in review: biology
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage  Y.-S. Lin, M.Sc, Dr M.-H. Huang, M.D., Ph.D.,
Osteoarthritis year in review 2016: mechanics
General Information Osteoarthritis and Cartilage
Presentation transcript:

Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage  L. Rieppo, S. Saarakkala, T. Närhi, H.J. Helminen, J.S. Jurvelin, J. Rieppo  Osteoarthritis and Cartilage  Volume 20, Issue 5, Pages 451-459 (May 2012) DOI: 10.1016/j.joca.2012.01.010 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Infrared absorption spectra from AC (solid line) and type II collagen (dashed line) (A). Pure compound spectrum of chondroitin sulphate (solid line) and a difference spectrum (see Data analysis in Materials and Methods) computed by subtracting the mean spectrum after the enzyme treatment from the mean spectrum before enzyme treatment of formalin-fixed samples (dashed line) (B). Osteoarthritis and Cartilage 2012 20, 451-459DOI: (10.1016/j.joca.2012.01.010) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 The mean second derivative spectra of AC of formalin-fixed sections (A). The mean relative change (± standard deviation) in the amplitude of second derivative absorption peaks in formalin-fixed sections (black squares) (B). For comparison, the mean relative changes in cryosections for the two peaks that changed the most are marked with white squares. Osteoarthritis and Cartilage 2012 20, 451-459DOI: (10.1016/j.joca.2012.01.010) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 The changes in the total absorbance, amide I absorbance, carbohydrate region, the ratio of carbohydrate region to amide I as well as the changes in collagen- and PG-specific second derivative peaks. White stars indicate a statistically significant difference in the amplitude caused by removal of PGs (Wilcoxon signed-rank test, P < 0.05). Black stars indicate a statistically significant difference between formalin-fixed sections and cryosections (Mann–Whitney U-test, P < 0.05). Two stars indicate statistical significance level of P < 0.01. Osteoarthritis and Cartilage 2012 20, 451-459DOI: (10.1016/j.joca.2012.01.010) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Depth-wise distributions of the heights of two PG-related and two collagen-related second derivative peaks. The distributions before the removal of PGs are marked with squares and solid lines, whereas the distributions after the removal of PGs are marked with triangles and dashed lines. Profiles are group means of formalin-fixed samples (n = 10). Standard deviations are shown for five points for each distribution. (A) The height of the PG-related second derivative peak at 1376 cm−1. (B) The height of the PG-related second derivative peak at 1064 cm−1. (C) The height of the collagen-related second derivative peak at 1202 cm−1. (D) The height of the collagen-related second derivative peak at 1336 cm−1. Osteoarthritis and Cartilage 2012 20, 451-459DOI: (10.1016/j.joca.2012.01.010) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Safranin O-stained section before the enzyme treatment (A), safranin O-stained section after the enzyme treatment (B). Chemical FT-IR spectroscopic imaging maps of untreated AC (C–F): the height of the second derivative peak at 1064 cm−1 (sulphated PGs) (C), the height of the second derivative peak at 1376 cm−1 (all PGs) (D), the height of the second derivative peak at 1202 cm−1 (collagen) (E), the height of the second derivative peak at 1336 cm−1 (collagen) (F). Osteoarthritis and Cartilage 2012 20, 451-459DOI: (10.1016/j.joca.2012.01.010) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions