Embedded Architectures: Configurable, Re-configurable, or what?

Slides:



Advertisements
Similar presentations
CASES 2002 Intl Conference on Compilers, Architectures and Synthesis for Embedded Systems Embedded Architectures: Configurable, Re-configurable, or what?
Advertisements

Reconfigurable Computing After a Decade: A New Perspective and Challenges For Hardware-Software Co-Design and Development Tirumale K Ramesh, Ph.D. Boeing.
A reconfigurable system featuring dynamically extensible embedded microprocessor, FPGA, and customizable I/O Borgatti, M. Lertora, F. Foret, B. Cali, L.
Engr. M.K.Debnath1 Microcontroller and PLC Eng. ISRAFIL KHAN. DIPLOMA IN ELECTRONIC.
An Introduction to Reconfigurable Computing Mitch Sukalski and Craig Ulmer Dean R&D Seminar 11 December 2003.
Reconfigurable Supercomputing: Hindernisse und Chancen Reiner Hartenstein TU Kaiserslautern Universität Mannheim, 13. Dez
MSE 2005 Reconfigurable Computing (RC) being Mainstream: Torpedoed by Education Reiner Hartenstein TU Kaiserslautern International Conference on Microelectronic.
IPDPS 2004 Software or Configware? About the Digital Divide of Parallel Computing Reiner Hartenstein TU Kaiserslautern Santa Fe, NM, April , 2004.
From Organic Computing to Reconfigurable Computing Reiner Hartenstein TU Kaiserslautern PASA, Frankfurt, March 16, 2006.
Reconfigurable HPC Reconfigurable HPC part 1 Introduction Reiner Hartenstein TU Kaiserslautern May 14, 2004, TU Tallinn, Estonia.
Seminar at Kyushu University Reconfigurable Technologies (1) Reiner Hartenstein TU Kaiserslautern July 23, 2004, Fukuoka, Japan.
Chapter 2: Impact of Machine Architectures What is the Relationship Between Programs, Programming Languages, and Computers.
PSU CS 106 Computing Fundamentals II Introduction HM 1/3/2009.
UCB November 8, 2001 Krishna V Palem Proceler Inc. Customization Using Variable Instruction Sets Krishna V Palem CTO Proceler Inc.
MCU – Microcontroller Unit – 1 MCU  1 cip or VLSI core – application-specific.
EKT303/4 PRINCIPLES OF PRINCIPLES OF COMPUTER ARCHITECTURE (PoCA)
An Introduction Chapter Chapter 1 Introduction2 Computer Systems  Programmable machines  Hardware + Software (program) HardwareProgram.
Computer Architecture and Organization Introduction.
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Archs, VHDL 3 Iowa State University (Ames) CPRE 583 Reconfigurable Computing Lecture.
Automated Design of Custom Architecture Tulika Mitra
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Architectures Iowa State University (Ames) CPRE 583 Reconfigurable Computing Lecture.
VLSI-SoC 2001 IFIP - LIRMM Stream-based Arrays: Converging Design Flows for both, Reiner Hartenstein University of Kaiserslautern December 2- 4, 2001,
EE3A1 Computer Hardware and Digital Design
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Architectures Iowa State University (Ames) Reconfigurable Architectures Forces that drive.
EKT303/4 PRINCIPLES OF PRINCIPLES OF COMPUTER ARCHITECTURE (PoCA)
Computer Hardware A computer is made of internal components Central Processor Unit Internal External and external components.
MICROOCESSORS AND MICROCONTROLLER:
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Architectures Iowa State University (Ames) CPRE 583 Reconfigurable Computing Lecture.
Computer Organization Exam Review CS345 David Monismith.
CPU Lesson 2.
Computer Organization and Architecture Lecture 1 : Introduction
Programmable Logic Devices
CST 303 COMPUTER SYSTEMS ARCHITECTURE (2 CREDITS)‏
Introduction to Parallel Processing
Programmable Hardware: Hardware or Software?
Basic Computer Organization and Design
Microprocessor and Microcontroller Fundamentals
15-740/ Computer Architecture Lecture 3: Performance
Hands On SoC FPGA Design
Topics SRAM-based FPGA fabrics: Xilinx. Altera..
Baring It All to Software: Raw Machines
ECE354 Embedded Systems Introduction C Andras Moritz.
System On Chip.
Introduction ( A SoC Design Automation)
Instructor: Dr. Phillip Jones
Architecture & Organization 1
Microprocessor and Assembly Language
CGRA Express: Accelerating Execution using Dynamic Operation Fusion
Computer Architecture and Organization
Memory Organisation for Datastream-based Reconfigurable Computing
Lecture 41: Introduction to Reconfigurable Computing
Architecture & Organization 1
Dynamically Reconfigurable Architectures: An Overview
ECEG-3202 Computer Architecture and Organization
Chapter 2: Data Manipulation
The performance requirements for DSP applications continue to grow and the traditional solutions do not adequately address this new challenge Paradigm.
ECEG-3202 Computer Architecture and Organization
Chapter 1 Introduction.
Computer Architecture
Introduction to Heterogeneous Parallel Computing
What is Computer Architecture?
Chapter 2: Data Manipulation
Hardware Architectures for Deep Learning
Electronics for Physicists
Exploring Application Specific Programmable Logic Devices
Chapter 2: Data Manipulation
CSE378 Introduction to Machine Organization
MCU – Microcontroller Unit – 2
Programmable logic and FPGA
Presentation transcript:

Embedded Architectures: Configurable, Re-configurable, or what? viewgraph downloading, for a link see: http://hartenstein.de Grenoble, France October 8 - 11 2002 Embedded Architectures: Configurable, Re-configurable, or what? (position statements) Reiner Hartenstein University of Kaiserslautern Re-configurable ! Pierre Paulin, STMicro (moderator); Henk Corporaal, IMEC; Reiner Hartenstein, University of Kaiserslautern; Oz Levia, Improv Systems; Marco Pavesi, Italtel; Chris Rowen, Tensilica. Thursday, Oct 10, session 5, 4.00 - 5.00 p.m.

„Re-configurable Hardware“ ?? Terminology has been highly confusing „Re-configurable Hardware“ ?? this „Hardware“ is not hard ! it‘s Morphware We need a concise terminology: a consensus is on the way 2

Terminology: DPU versus CPU ... DPA DPU: data path unit DPA: DPU array GA: gate array rDPU: reconfigurable DPU rDPA: reconfigurable DPA rGA: reconfigurable GA (r) DPU DPU instruction sequencer CPU DPU is no CPU: there is nothing central - like in a DPA 3

Digital System Platforms clearly distinguished program source running on it machine paradigm hardware (not programmable) none morphware fine grain rGA (FPGA) configware coarse grain rDPU, rDPA reconfigurable data stream processor flowware & configware anti machine data stream processor (hardwired) flowware instruction stream processor software von Neumann machine 4

flowware defines .... time port # ... which data item at which time at which port x | - input data streams DPA time port # x - | output data streams flowware manipulates the data counter(s) ... ... software manipulates the program counter 5

Configware / Flowware Compilation data streams intermediate high level source program wrapper flowware scheduler r. Data Path Array rDPA configware mapper address generator data sequencer 6

most important contributor to nano SoC we need rDPAs for: cellular wireless multimedia other applications relative merits: performance flexibility time to market product longevity key functionalities: to cope with compute requirements unstable standards multiple standards 7

Processor Performance 4G Processor Performance Algorithmic Complexity (Shannon’s Law) 3G Memory (Moore’s Law) Transistors/chip 1960 1970 1980 1990 2000 2010 100 000 000 10 000 000 1000 000 100 000 10 000 1000 100 10 1 2G 1G wireless microprocessor / DSP processor speed Normalized processor speed Normalized 8

Performance vs. Flexibility rDPAs go far beyond bridging the gap rDPA *) R. Hartenstein: ISIS 1997 rDPAs (reconfigurable computing)* DeMan [T. Claasen et al.: ISSCC 1999] MOPS / mW 1000 flexibility throughput hard- wired hardwired 100 FPGA Reconfigurable logic 10 von Neumann instruction set processors standard microprocessor DSP 1 0.1 0.01 0.001 2 1 0.5 0.25 0.13 0.1 0,07 µ feature size 9

cSoC for wireless communication et al. incremental dynamic reconfiguration Xtreme processing unit (XPU) from PACT rDPA http://pactcorp.com Layout for UMC 0.13 mm CMOS 10

Time to Market 11 A Fundamental Paradigm Shift in Silicon Application Revenue / month Time / months 1 10 20 ASIC Product 30 Update 1 Product Update 2 reconfigurable with download [Tom Kean] 11

END >>> END 12 © 2001, reiner@hartenstein.de http://KressArray.de University of Kaiserslautern >>> END END 12

>>> Appendix © 2001, reiner@hartenstein.de http://KressArray.de University of Kaiserslautern >>> Appendix Appendix for discussion 13

Why a dichotomy of machine paradigms? vN: unbalanced vN bottleneck stolen from Bob Colwell caches, ... data stream machine: bad message: caches do not help good message: no vN bottleneck caches not needed CPU 14

Soap Chip* Platform Template important: coarse grain morphware Configware Software S/W C/W microProg peripherals RISC, VLIW Config. MCU ASIP S/W Gen. Purp. RISC, VLIW Scalable SoC interconnect ASIC Mem Processor Standard I/O blocks ROM, Flash eSRAM eDRAM DSP C/W C/W FPGA eFPGA Standard H/W IP C/W RC rDPA *) System on a programmable Chip © 2002, reiner@hartenstein.de 15 http://hartenstein.de

Programming sources von Neumann instruction stream machine hardwired only Anti machine data stream machine flowware reconfigurable or hardwired 16

Machine paradigms von Neumann data-stream machine Flowware Software instruction stream machine Flowware Software Configware embedded memory architecture* 17

new business model needed Cost year product life cycle design cost new business model needed the key enabler: morphware 18

Glossary approaching consensus 19 digital system platforms: platform category source „running“ on platform machine paradigm hardware (not programmable) none ISP** software von Neumann morphware configware FPGA: none data stream processor (AMP*) flowware anti machine reconfigurable AMP (rAMP) flowware & configware DPU data path unit rDPU reconfigurable DPU DPA data path array (DPU array) rDPA reconfigurable DPA ISP instruction set processor AM anti machine AMP data stream processor* rAMP reconfigurable AMP *) no “dataflow machine” categories of morphware: morphware use granularity (path width) (re)configurable blocks reconfigurable logic fine grain (FPGA) (~1 bit) CLBs reconfigurable computing coarse grain (e.g. 32 bits) rDPUs (e.g. ALU-like) multi granular: by slice bundling rDPU slices (e.g. 4 bits) **) instruction set processor *) data stream processor 19