Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland 

Slides:



Advertisements
Similar presentations
Receptive Field Microstructure and Dendritic Geometry of Retinal Ganglion Cells Solange P. Brown, Shigang He, Richard H. Masland Neuron Volume 27, Issue.
Advertisements

Volume 79, Issue 6, Pages (September 2013)
Pierre Mattar, Johan Ericson, Seth Blackshaw, Michel Cayouette  Neuron 
A Precisely Timed Asynchronous Pattern of ON and OFF Retinal Ganglion Cell Activity during Propagation of Retinal Waves  Daniel Kerschensteiner, Rachel.
Daw Neuron Volume 39, Issue 1, Pages (July 2003)
Volume 21, Issue 6, Pages (December 2011)
Volume 49, Issue 6, Pages (March 2006)
PDF Has Found Its Receptor
Heterosynaptic LTP in Early Development
Dense Inhibitory Connectivity in Neocortex
The Neuronal Organization of the Retina
Volume 87, Issue 6, Pages (September 2015)
Retinal Representation of the Elementary Visual Signal
The Cadherin Flamingo Mediates Level-Dependent Interactions that Guide Photoreceptor Target Choice in Drosophila  Pei-Ling Chen, Thomas R. Clandinin 
Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves
Extreme Diversity among Amacrine Cells: Implications for Function
Von Economo Neurons in the Anterior Insula of the Macaque Monkey
Volume 15, Issue 12, Pages (June 2005)
Volume 59, Issue 3, Pages (August 2008)
Volume 82, Issue 4, Pages (May 2014)
Fireworks in the Primate Retina
Volume 89, Issue 5, Pages (March 2016)
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Volume 23, Issue 17, Pages (September 2013)
Nob Mice Wave Goodbye to Eye-Specific Segregation
Volume 31, Issue 6, Pages (September 2001)
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields  Keith P. Johnson, Lei Zhao, Daniel Kerschensteiner 
Volume 15, Issue 6, Pages (March 2005)
Volume 48, Issue 6, Pages (December 2005)
Volume 88, Issue 3, Pages (November 2015)
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Redundancy in the Population Code of the Retina
Volume 74, Issue 2, Pages (April 2012)
Volume 94, Issue 6, Pages e4 (June 2017)
Parallel Mechanisms Encode Direction in the Retina
Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina
Volume 60, Issue 4, Pages (November 2008)
Volume 57, Issue 4, Pages (February 2008)
Volume 85, Issue 6, Pages (March 2015)
Volume 30, Issue 1, Pages (July 2014)
Volume 21, Issue 6, Pages (December 2011)
Volume 17, Issue 11, Pages (June 2007)
Neuronal Cell Types and Connectivity: Lessons from the Retina
Ingrid Bureau, Gordon M.G Shepherd, Karel Svoboda  Neuron 
Volume 93, Issue 4, Pages e6 (February 2017)
Volume 81, Issue 4, Pages (February 2014)
Allan M Wong, Jing W Wang, Richard Axel  Cell 
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 71, Issue 6, Pages (September 2011)
SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo
Volume 49, Issue 2, Pages (January 2006)
The Cellular Organization of Zebrafish Visuomotor Circuits
Volume 62, Issue 3, Pages (May 2009)
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina  Nai-Wen Tien, Tahnbee.
Volume 87, Issue 6, Pages (September 2015)
Sumathi Sekaran, Russell G. Foster, Robert J. Lucas, Mark W. Hankins 
Pranav Sharma, Hollis T. Cline  Neuron 
What the Fish’s Eye Tells the Fish’s Brain
Volume 13, Issue 10, Pages (May 2003)
Grid Cells and Neural Coding in High-End Cortices
Serkan Oray, Ania Majewska, Mriganka Sur  Neuron 
Volume 23, Issue 6, Pages (May 2018)
SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo
A user's perspective on GeoMxTM digital spatial profiling
Juliana M. Rosa, Sabine Ruehle, Huayu Ding, Leon Lagnado  Neuron 
Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland 
Volume 115, Issue 4, Pages (October 1998)
Common Temporal Identity Factors Regulate Neuronal Diversity in Fly Ventral Nerve Cord and Mouse Retina  Nikolaos Konstantinides, Anthony M. Rossi, Claude.
Presentation transcript:

Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts  Bin Lin, Steven W Wang, Richard H Masland  Neuron  Volume 43, Issue 4, Pages 475-485 (August 2004) DOI: 10.1016/j.neuron.2004.08.002

Figure 1 Densities and Morphologies of Ganglion Cells in Brn3b−/− and Math5−/− (A) The numbers of cells counted along dorsoventral and nasotemporal axes from the Brn3b−/− (green), Math5−/− (blue), and wild-type (red). The total number of neurons (ganglion cells plus displaced amacrine cells) was evaluated by staining with ethidium homodimer. The number of ganglion cells was measured by staining for Thy-1. (B) Average densities of the ethidium and CD90.2 cells in the ganglion cell layer. (C–H) Ganglion cells filled by injection or retrograde photodynamic “fireworks” in Brn3b−/− retinas. Numbers in parentheses correspond to types named by Sun et al. (2002). Scale bar equals 100 μm. Neuron 2004 43, 475-485DOI: (10.1016/j.neuron.2004.08.002)

Figure 2 Two Types of Ganglion Cells in Wild-Type and Two Knockout Mice SMI-32 and melanopsin cells from whole mounted retinas of the wild-type (A and D), Brn3b−/− (B and E), and Math5−/− (C and F). The graph (G) shows the numbers of cells counted along dorsoventral and nasotemporal axes from the Brn3b−/− (blue) and wild-type (pink). Scale bar equals 50 μm. Neuron 2004 43, 475-485DOI: (10.1016/j.neuron.2004.08.002)

Figure 3 Regular Mosaics of Two Ganglion Cell Populations in Brn3b−/− (A–F) Spatial distributions of melanopsin-expressing ganglion cells (A–C) and SMI-32-labeled ganglion cell (D–F) in Brn3b−/− and wild-type. A dot represents a cell body. The gray areas indicate local regions, including the optic nerve head, where staining was incomplete. (G–J) Density recovery profiles for the Brn3b−/− and wild-type retinas. Neuron 2004 43, 475-485DOI: (10.1016/j.neuron.2004.08.002)

Figure 4 Incomplete Coverage of Two Ganglion Cell Populations in Brn3b−/− (A and B) Incomplete tiling in Brn3b−/−. Colored polygons indicate boundaries of the ganglion cell arbors. Red arrows point to the gaps between neighboring ganglion cells. (C) Sizes of the dendritic arbors of melanopsin and SMI-32-labeled cells in the ganglion cell layer of the wild-type, Brn3b−/−, and Math5−/−. (D and E) Camera lucida tracing of the SMI-32 and melanopsin-positive cell populations in whole mounts of wild-type retinas. (F and G) The boundaries of the dendritic fields are shown by colored polygons. These dendritic arbors tile the retina with the partial overlap typical of retinal ganglion cells in normal retinas. (H–K) Dendritic fields of ganglion cells in Brn3b−/−. Scale bar equals 100 μm. Neuron 2004 43, 475-485DOI: (10.1016/j.neuron.2004.08.002)

Figure 5 Wide Spacing among Melanopsin and SMI-32 Cells in Math5−/− Spatial distributions of melanopsin and SMI-32-labeled ganglion cells in Math5−/− retinas. (B) and (D) are high-power views of the individual ganglion cells boxed in (A) and (C). Neuron 2004 43, 475-485DOI: (10.1016/j.neuron.2004.08.002)