Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY

Slides:



Advertisements
Similar presentations
DNA and splicing (circular) Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. di Milano - Bicocca ITALY Dipartimento di Informatica e Applicazioni,
Advertisements

Molecular Computing Formal Languages Theory of Codes Combinatorics on Words.
Formal Languages Theory of Codes Combinatorics on words Molecular Computing.
Towards a characterization of regular languages generated by finite splicing systems: where are we? Ravello, Settembre 2003 Paola Bonizzoni, Giancarlo.
Two-dimensional Rational Automata: a bridge unifying 1d and 2d language theory Marcella Anselmo Dora Giammarresi Maria Madonia Univ. of Salerno Univ. Roma.
Formal Languages: main findings so far A problem can be formalised as a formal language A formal language can be defined in various ways, e.g.: the language.
4b Lexical analysis Finite Automata
Lecture 16 Deterministic Turing Machine (DTM) Finite Control tape head.
8/27/2009 Sofya Raskhodnikova Intro to Theory of Computation L ECTURE 2 Theory of Computation Finite Automata Operations on languages Nondeterminism L2.1.
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 3 School of Innovation, Design and Engineering Mälardalen University 2012.
Magic Numbers and Subset Construction Samik Datta Sayantan Mahinder.
Introduction to Computability Theory
1 Introduction to Computability Theory Lecture7: PushDown Automata (Part 1) Prof. Amos Israeli.
Finite Automata Finite-state machine with no output. FA consists of States, Transitions between states FA is a 5-tuple Example! A string x is recognized.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
79 Regular Expression Regular expressions over an alphabet  are defined recursively as follows. (1) Ø, which denotes the empty set, is a regular expression.
DNA SPLICING RULES STAYING TRUE TO THE BIOLOGY Elizabeth Goode April 2015.
DIPLOMA THESIS Peter Černo Clearing Restarting Automata Supervised by RNDr. František Mráz, CSc.
“Developments on linear and circular splicing” Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica.
THEORY OF COMPUTATION 08 KLEENE’S THEOREM.
CS/IT 138 THEORY OF COMPUTATION Chapter 1 Introduction to the Theory of Computation.
Theory of Languages and Automata
Introduction to CS Theory Lecture 3 – Regular Languages Piotr Faliszewski
Computing languages by (bounded) local sets Dora Giammarresi Università di Roma “Tor Vergata” Italy.
1 CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 3 Mälardalen University 2010.
“New results on finite H-systems” Budapest, 29/30 November 2002 Jointly with Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri Dipartimento di Informatica.
ON THE EXPRESSIVE POWER OF SHUFFLE PRODUCT Antonio Restivo Università di Palermo.
An Introduction to Rabin Automata Presented By: Tamar Aizikowitz Spring 2007 Automata Seminar.
Grammars A grammar is a 4-tuple G = (V, T, P, S) where 1)V is a set of nonterminal symbols (also called variables or syntactic categories) 2)T is a finite.
Formal Languages Finite Automata Dr.Hamed Alrjoub 1FA1.
Algorithms for hard problems Automata and tree automata Juris Viksna, 2015.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
THE CONVENTIONS 2 simple rules: Rule # 1: Rule # 2: RR “move to the right until you find  “ Note: first check. Then move (think of a “while”) “Never.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen.
1/29/02CSE460 - MSU1 Nondeterminism-NFA Section 4.1 of Martin Textbook CSE460 – Computability & Formal Language Theory Comp. Science & Engineering Michigan.
Theory of Computation Automata Theory Dr. Ayman Srour.
Theory of Languages and Automata By: Mojtaba Khezrian.
5. Context-Free Grammars and Languages
Formal Languages, Automata and Models of Computation
Implementation of Haskell Modules for Automata and Sticker Systems
Formal Methods in software development
Lexical analysis Finite Automata
CSE 105 theory of computation
Non Deterministic Automata
Theory of Languages and Automata
FORMAL LANGUAGES AND AUTOMATA THEORY
Linear Bounded Automata LBAs
Context Sensitive Grammar & Turing Machines
CSCE 355 Foundations of Computation
CSE 105 theory of computation
Formal Language & Automata Theory
Course 2 Introduction to Formal Languages and Automata Theory (part 2)
Equivalence, DFA, NDFA Sequential Machine Theory Prof. K. J. Hintz
Chapter 2 FINITE AUTOMATA.
REGULAR LANGUAGES AND REGULAR GRAMMARS
Hierarchy of languages
CSE322 The Chomsky Hierarchy
A HIERARCHY OF FORMAL LANGUAGES AND AUTOMATA
5. Context-Free Grammars and Languages
Non-Deterministic Finite Automata
4b Lexical analysis Finite Automata
Finite-State Methods in Natural-Language Processing: Basic Mathematics
Formal Methods in software development
4b Lexical analysis Finite Automata
Chapter 1 Regular Language
CSE 105 theory of computation
Sub: Theoretical Foundations of Computer Sciences
Theoretical Foundations of Computer Sciences
The Chomsky Hierarchy Costas Busch - LSU.
CSCI 2670 Introduction to Theory of Computing
Presentation transcript:

Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY “Nuovi risultati sui sistemi splicing lineari finiti” Palermo, 13/15 Febbraio 2003 Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. of Milano - Bicocca, ITALY Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY

In the following… Characterize regular languages Finite linear splicing system: SPA = ( A, I, R) with A, I, R finite sets Characterize regular languages generated by finite linear Paun splicing systems Problem 1 Given L regular, can we decide whether L  H(FIN,FIN) ? Problem 2

Remark SPA = (A, I, R) Reflexive splicing system [Handbook 1996] SPA = (A, I, R) finite + (reflexive hypothesis on R) u1 | u2 $ u3 | u4 R  u1 | u2 $ u1 | u2 , u3 | u4 $ u3 | u4 R Remark [Handbook 1996] Finite Paun splicing system, reflexive and symmetric Finite Head splicing system

Reflexive Paun splicing languages Main result 1 The characterization of reflexive Paun splicing languages by means of finite set of (Schutzenberger) constants C finite set of factorizations of these constants into 2 words FINITE UNION OF Reflexive Paun splicing languages languages containing constants in C  languages containing mixed factorizations of constants

(and 2) Pixton Pixton mapping of some pairs of constants into a word languages containing images of constants

Head splicing languages Main result 3 The characterization of Head splicing languages Reflexive Paun splicing languages Reflexive and “transitive” Paun splicing languages Head splicing languages FINITE UNION OF Head splicing languages languages containing constants in C  languages containing “constrained” mixed factorizations of constants

LINEAR SPLICING DNA Strand 2 DNA Strand 1 restriction enzyme ligase enzyme ligase enzyme

Paun’s linear splicing operation (1996) r = u1 | u2 $ u3 | u4 rule : (x u1u2 y, wu3u4 z) (x u1 u4 z , wu3 u2 y) sites x u1 u2 y u3 u4 w z Pattern recognition x u1 u4 z cut u2 y u3 w paste u1 u4 u3 u2 x z w y

Paun’s linear splicing system (1996) SPA = (A, I, R) A=finite alphabet; I A* initial language; RA*|A*$A*|A* set of rules; L(SPA) = I  (I)  2(I)  ... = n0 n(I) splicing language Example (aa)*b =L(SPA) , I={b, aab} , R={1| b$ 1| aab} (aab , aab) = (aaaab, b) H(F1, F2) = {L=L(SPA) | SPA = (A,I,R), IF1, R  F2, F1, F2 families in the Chomsky hierarchy} Known results [Head, Paun, Pixton, Handbook of Formal Languages, 1996] H(F1, F2) { L | L=L(SPA), I regular, R finite } = Regular { L | L=L(SPA), I, R finite sets }  Regular (aa)*  L(SPA) (proper subclass)

Head 2002 Splicing systems: regular languages and below (DNA8) Computational power of splicing languages and regular languages: a short survey… Head 1987 (Bull. Math. Biol.): SLT=languages generated by Null Context splicing systems (triples (1,x,1)) Gatterdam 1992 (SIAM J. of Comp.): specific finite Head’s splicing systems Culik, Harju 1992 (Discr. App. Math.): (Head’s) splicing and domino languages Kim 1997 (SIAM J. of Comp.): from the finite state automaton recognizing I to the f.s.a. recognizing L(SH) Kim 1997 (Cocoon97): given LREG, a finite set of triples X, we can decide whether  IL s.t. L= L(SH) Pixton 1996 (Theor. Comp. Sci.): if F is a full AFL, then H(FA,FIN)  FA Mateescu, Paun, Rozenberg, Salomaa 1998 (Discr. Appl. Math.): simple splicing systems (all rules a|1 $ a|1, aA); we can decide whether LREG, L= L(SPA ), SPA simple splicing system. Head 1998 (Computing with Bio-Molecules): given LREG, we can decide whether L= L(SPA ) with “special” one sided-contexts rR: r=u|1 $ v|1 (resp. r=1|u $ 1|v), u|1 $ u|1R (resp. 1|u $ 1|uR) Head 1998 (Discr. Appl. Math.): SLT=hierarchy of simple splicing systems Bonizzoni, Ferretti, Mauri, Zizza 2001 (IPL): Strict inclusion among finite splicing systems Head 2002 Splicing systems: regular languages and below (DNA8)

TOOLS: Automata Theory Main Difficulty Rules for generating... c c v’ v v’ u v z u u’ c v u z TOOLS: Automata Theory Syntactic Congruence (w.r.t. L) [x] x L x’  [ w,z A* wxz  L  wx’z L]  C(x,L) = C(x’,L) Context of x and x’ syntactic monoid M(L)= A*/ L L regular  M (L) finite Minimal Automaton Constant [Schützenberger, 1975] w  A* is a CONSTANT for a language L if C(w,L)=Cl (w,L)  Cr (w,L) Left context Right context

L=L(A ) , A = (A, Q,, q0 ,F) minimal Partial results [Bonizzoni, De Felice, Mauri, Zizza (2002)] L=L(A ) , A = (A, Q,, q0 ,F) minimal Marker w[x] deterministic [x] > w > qF > q0 > > only here > L(w[x])={y’1wx’ y’2 L|(q0 ,y’1 w x’ y’2)=qF, x’  [x]} finite splicing language Marker Language Note that we can ERASE Locally reversible Hypotheses, - qF  F

Reflexive splicing system [Handbook 1996] L is a reflexive splicing language  L=L(SPA), SPA reflexive splicing system Theorem [Head, Splicing languages generated by one-sided context (1998)] L is a regular language generated by a reflexive SPA=(A, I, R) , where rR: r=u|1 $ v|1 (resp. r=1|u $ 1|v)   finite set of constants F for L s.t. the set L\ {A*cA* : c  F} is finite We can decide the above property, but only when ALL rules are either r=u|1 $ v|1 or r=1|u $ 1|v

Our result [Bonizzoni, De Felice, Mauri, Zizza] Lemma L is a regular reflexive splicing language  finite splicing system SPA=(A, I, R) s.t. L=L(SPA) and each site is a constant for L Theorem L is a regular reflexive splicing language  L is a split-language. Not only one-sided contexts Extend Head’s result Alternative, constructive, effective proof for constant languages Reflexive splicing languages Decidability property Marker languages Contain some constant languages, but also reflexive splicing languages

Split-languages T finite subset of N, {mt | mt is a constant for a regular language L, t  T} Constant language L(mt) = {x mt y L| x,yA*} L is a split language  L = X  t  T L(mt)  (j,j’)L(j,j’) Finite set, s.t. no word in X has mt as a factor Union of constant languages mt m(j,1) m(j,2) L1m t L2 = L1 m(j,1) m(j,2) L2 L1 m(j,1) m(j’,2) L’2  L’1m(j’,1) m(j,2) L2 m(j’,1) m(j’,2) L’1 m t’ L’2 = L’1m(j’,1) m(j’,2) L’2 mt’