Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 7.1: Introduction to Systems of First Order Linear Equations
Boyce/DiPrima 9th ed, Ch 11.2: Sturm-Liouville Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Differential Equations
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Section 4.1 Initial-Value and Boundary-Value Problems
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Existence of a Unique Solution Let the coefficient functions and g(x) be continuous on an interval I and let the leading coefficient function not equal.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Differential Equations MTH 242 Lecture # 09 Dr. Manshoor Ahmed.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
UDS MTH:311 Differential Equations 1 ST TRIMESTER 2012/13 DR. Y. I. SEINI 2012.
An IVP would look like Second Order Linear DE’s. Thm. Existence of a Unique Solution Let a 0, a 1, a 2, and g(x) be continuous on an interval containing.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 10.4: Even and Odd Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients
Boyce/DiPrima 10th ed, Ch 7.2: Review of Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 10.8 Appendix A: Derivation of the Heat Conduction Equation Elementary Differential Equations and Boundary Value Problems, 9th.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 9.6: Liapunov’s Second Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Ch 10.1: Two-Point Boundary Value Problems
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Chapter 4: Linear Differential Equations
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 4.1: Higher Order Linear ODEs: General Theory
Class Notes 7: High Order Linear Differential Equation Homogeneous
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Systems of First Order Linear Equations
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
MAE 82 – Engineering Mathematics
Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations
Ch 4.1: Higher Order Linear ODEs: General Theory
Second Order Linear ODEs
Introduction to Ordinary Differential Equations
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9th edition,
Presentation transcript:

Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard C. DiPrima, ©2013 by John Wiley & Sons, Inc. A system of simultaneous first order ordinary differential equations has the general form where each xk is a function of t. If each Fk is a linear function of x1, x2, …, xn, then the system of equations is said to be linear, otherwise it is nonlinear. Systems of higher order differential equations can similarly be defined.

Example 1 The motion of a certain spring-mass system from Section 3.7 was described by the differential equation This second order equation can be converted into a system of first order equations by letting x1 = u and x2 = u'. Thus or

Nth Order ODEs and Linear 1st Order Systems The method illustrated in the previous example can be used to transform an arbitrary nth order equation into a system of n first order equations, first by defining Then

Solutions of First Order Systems A system of simultaneous first order ordinary differential equations has the general form It has a solution on I:  < t <  if there exists n functions that are differentiable on I and satisfy the system of equations at all points t in I. Initial conditions may also be prescribed to give an IVP:

Theorem 7.1.1 Suppose F1,…, Fn and F1/x1,…, F1/xn,…, Fn/ x1,…, Fn/xn, are continuous in the region R of t x1 x2…xn-space defined by  < t < , 1 < x1 < 1, …, n < xn < n, and let the point be contained in R. Then in some interval (t0 - h, t0 + h) there exists a unique solution that satisfies the IVP.

Linear Systems If each Fk is a linear function of x1, x2, …, xn, then the system of equations has the general form If each of the gk(t) is zero on I, then the system is homogeneous, otherwise it is nonhomogeneous.

Theorem 7.1.2 Suppose p11, p12,…, pnn, g1,…, gn are continuous on an interval I:  < t <  with t0 in I, and let prescribe the initial conditions. Then there exists a unique solution that satisfies the IVP, and exists throughout I.