Happy Birthday Michael !!. Probabilistic & Nondeterministic Finite Automata Avi Wigderson Institute for Advanced Study Very old (1996) joint work with.

Slides:



Advertisements
Similar presentations
Advice Coins Scott Aaronson. PSPACE/coin: Class of problems solvable by a PSPACE machine that can flip an advice coin (heads with probability p, tails.
Advertisements

Properties of Regular Sets
Low-End Uniform Hardness vs. Randomness Tradeoffs for Arthur-Merlin Games. Ronen Shaltiel, University of Haifa Chris Umans, Caltech.
Lower Bounds for Non-Black-Box Zero Knowledge Boaz Barak (IAS*) Yehuda Lindell (IBM) Salil Vadhan (Harvard) *Work done while in Weizmann Institute. Short.
CS 3240: Languages and Computation
Parallel Repetition of Two Prover Games Ran Raz Weizmann Institute and IAS.
Resource-Bounded Computation
Non-Deterministic Finite Automata
Derandomization & Cryptography Boaz Barak, Weizmann Shien Jin Ong, MIT Salil Vadhan, Harvard.
Theory of Computing Lecture 23 MAS 714 Hartmut Klauck.
Quantum Information and the PCP Theorem Ran Raz Weizmann Institute.
CSC 361NFA vs. DFA1. CSC 361NFA vs. DFA2 NFAs vs. DFAs NFAs can be constructed from DFAs using transitions: Called NFA- Suppose M 1 accepts L 1, M 2 accepts.
Lecture 24 MAS 714 Hartmut Klauck
8/27/2009 Sofya Raskhodnikova Intro to Theory of Computation L ECTURE 2 Theory of Computation Finite Automata Operations on languages Nondeterminism L2.1.
Erik Jonsson School of Engineering and Computer Science FEARLESS Engineeringwww.utdallas.edu/~pervin CS CS 4384 – HON001 Automata Theory
Quantum and probabilistic finite multitape automata Ginta Garkaje and Rusins Freivalds Riga, Latvia.
Classical and Quantum Automata Abuzer Yakaryılmaz Advisor: Prof. Cem Say.
Applied Computer Science II Chapter 1 : Regular Languages Prof. Dr. Luc De Raedt Institut für Informatik Albert-Ludwigs Universität Freiburg Germany.
Introduction to Computability Theory
NFAs Sipser 1.2 (pages 47–54). CS 311 Fall Recall… Last time we showed that the class of regular languages is closed under: –Complement –Union.
Finite Automata Great Theoretical Ideas In Computer Science Anupam Gupta Danny Sleator CS Fall 2010 Lecture 20Oct 28, 2010Carnegie Mellon University.
1 Introduction to Computability Theory Lecture2: Non Deterministic Finite Automata Prof. Amos Israeli.
NFAs Sipser 1.2 (pages 47–54). CS 311 Mount Holyoke College 2 Recall… Last time we showed that the class of regular languages is closed under: –Complement.
Introduction to Computability Theory
Regular operations Sipser 1.2 (pages 47-63). First… a sample proof
1 Introduction to Computability Theory Lecture2: Non Deterministic Finite Automata (cont.) Prof. Amos Israeli.
Finite Automata Finite-state machine with no output. FA consists of States, Transitions between states FA is a 5-tuple Example! A string x is recognized.
Quantum Automata Formalism. These are general questions related to complexity of quantum algorithms, combinational and sequential.
CS5371 Theory of Computation Lecture 4: Automata Theory II (DFA = NFA, Regular Language)
1.Defs. a)Finite Automaton: A Finite Automaton ( FA ) has finite set of ‘states’ ( Q={q 0, q 1, q 2, ….. ) and its ‘control’ moves from state to state.
Theory of Computing Lecture 22 MAS 714 Hartmut Klauck.
Quantum Counters Smita Krishnaswamy Igor L. Markov John P. Hayes.
Nondeterminism (Deterministic) FA required for every state q and every symbol  of the alphabet to have exactly one arrow out of q labeled . What happens.
1Computer Sciences Department. Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Reference 3Computer Sciences Department.
REGULAR LANGUAGES.
Happy 60 th B’day Mike. Lower bounds, anyone? Avi Wigderson Institute for Advanced Study.
Theory of Languages and Automata
Automatic Structures Bakhadyr Khoussainov Computer Science Department The University of Auckland, New Zealand.
By: Er. Sukhwinder kaur.  What is Automata Theory? What is Automata Theory?  Alphabet and Strings Alphabet and Strings  Empty String Empty String 
Lexical Analysis Constructing a Scanner from Regular Expressions.
PROBABILISTIC COMPUTATION By Remanth Dabbati. INDEX  Probabilistic Turing Machine  Probabilistic Complexity Classes  Probabilistic Algorithms.
Finite Automata Chapter 1. Automatic Door Example Top View.
Minimal NFA Problems are hard Tao Jiang & B. Ravikumar N Andres Parra.
using Deterministic Finite Automata & Nondeterministic Finite Automata
Nondeterministic Finite Automata (NFAs). Reminder: Deterministic Finite Automata (DFA) q For every state q in Q and every character  in , one and only.
Almost SL=L, and Near-Perfect Derandomization Oded Goldreich The Weizmann Institute Avi Wigderson IAS, Princeton Hebrew University.
Deterministic Finite Automata Nondeterministic Finite Automata.
Lecture #5 Advanced Computation Theory Finite Automata.
Review : Theory of Computation. Regular Language and Finite Automata Context-free Language and Pushdown Automata Turing Machine and Recursive Enumerable.
CIS Automata and Formal Languages – Pei Wang
Foundations of Computing Science
Formal Language & Automata Theory
Non Deterministic Automata
CS 461 – Dec. 2 Major results Automata: 3 models of computation
Finite Automata a b A simplest computational model
Uncountable Classical and Quantum Complexity Classes
Recognizer for a Language
Non-Deterministic Finite Automata
CSE322 Definition and description of finite Automata
Nondeterministic Finite Automata
Non Deterministic Automata
Finite Automata.
Chapter 1 Regular Language - 02
4b Lexical analysis Finite Automata
Chapter 1 Regular Language
CSE 105 theory of computation
CHAPTER 1 Regular Languages
Non Deterministic Automata
Presentation transcript:

Happy Birthday Michael !!

Probabilistic & Nondeterministic Finite Automata Avi Wigderson Institute for Advanced Study Very old (1996) joint work with Anne Condon Lisa Helerstein Sam Pottle

Pick a computational model. Study the relative power of its variants: Deterministic,Non-deterministic,Probabilistic Polynomial Time: NP=P? BPP=P? [BM,Y,NW,IW] BPP=P unless NP is easy Log Space: NL=L? BPL=L? [S] NL L 2 [IS] NL=coNL [N] BPL SC [SZ] BPL=L 3/2 [R] SL=L Finite automata! (= constant memory) [GMR,B] Arthur-Merlin, [F,D,BV] Quantum (part of) Rabins legacy

Deterministic,Non-deterministic,Probabilistic Arthur-Merlin, Quantum &1-way vs. 2-way read. 10 language classes… Regular = 1DFA, 1NFA, 1PFA, 1AMFA, 1QFA 2DFA, 2NFA, 2PFA, 2AMFA, 2QFA [Rabin-Scott 59] 1NFA = 2DFA = 1DFA [Rabin 63] 1PFA = 1DFA Comment : we shall not discuss relative succinctness Finite Automata (FA)

Deterministic,Non-deterministic,Probabilistic Arthur-Merlin, Quantum & 1-way vs. 2-way read [Rabin-Scott 59] 1NFA = 2DFA = Regular [Rabin 63] 1PFA = Regular [Shepherdson59] 2NFA = Regular [Freivalds 81] 2PFA can compute {a n b n } !! (But in exp time) FA* : automaton runs in expected poly-time [Dwork-Stockmeyer,Keneps-Frievalds 90] 2PFA*= Regular [Condon-Hellerstein-Pottle-W 96] 1AMFA = Regular [CHPW 96] 2AMFA* co2AMFA* = Regular [Watrous 97] 2QFA* compute {a n b n }, {a n b n c n }!! (linear time) OPEN: 2AMFA* = Regular ?? Results

L language M L infinite binary matrix x,y lexical order y 1101… [Myhill-Nerode] L regular 0110… iff M L has x … L(xy) finite number of rows iff 1s of M L have finite partition/cover by 1-tiles Communication Complexity [Yao] 111…1… … … … 111…1… … … … 1-tile x y Q: states |Q|=s

L accepted by 1DFA [Fact] 1DFA = Regular y Tile per state q Q x {x : Start q } X {y : q Accept } s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

L accepted by 1NFA y [RS] 1NFA = Regular x Tile per state q Q {x can Start q } X {y can q Accept } s tiles (cover) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1…

L accepted by 1PFA [R] 1PFA = Regular Tile per probability distribution p [10s] s {x : Start ~ p} X {y : p Accept w.p.> 2/3} (10s) s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

L accepted by 2DFA [RS] 2DFA = Regular Tile per crossing Sequence c Q 2s {x: c consistent with x} X {y: c cons with y & c Acc} s 2s tiles (partition) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

L accepted by 2NFA [S] 2NFA = Regular Tile per crossing Sequence c Q 2s {x can Start c } X {y can c Accept } s tiles (cover) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1…

L accepted by 2PFA* y [DS,KF] 2PFA* = Regular Tile per O(s)-state Markov chain m [log n] O(s) {x: m x-consistent} X {y: m y-cons & Pr[m Acc]> 2/3 } (log n) O(s) tiles (partition) of M L (n) [Karp,DS,KF] M L (n) has large nonregularity Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 111…1…

L, L c accepted by 2AMFA* [CHPW] L is Regular Tile per O(s)-state Markov chain m [log n] O(s) {x can be m-consistent} X {y can be m-cons& Pr[m Acc]> 2/3 } (log n) O(s) 1-tiles (cover) of M L (n) (log n) O(s) 0-tiles (cover) of M L (n) [AUY,MS] Rank(M L (n)) = n o(1) Proofs 111…1… … … … 111…1… … … … x y Q: states |Q|=s 1…1…111 … 111…1… 111…0… … … … … 00…0… … … … 0…0…00

[CHPW] L not Regular Rank(M L (n)) = n infinitely often [Frobenius 1894] [Iohvidov 1969] Special case when L is unary M L Hankel matrix Main Thm

What is the power of interactive proofs when the verifier has constant memory ? 2AMFA* = Regular ?? Open question

Happy Birthday Michael !!