1 Thirteenth International Meeting on DNA Computers June 5, 2007 Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues Eric DemaineMassachusetts.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
2 Casa 15m Perspectiva Lateral Izquierda.
Repaso: Unidad 2 Lección 2
1 A B C
Simplifications of Context-Free Grammars
Variations of the Turing Machine
AP STUDY SESSION 2.
1
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
Slide 1Fig 39-CO, p Slide 2Fig 39-1, p.1246.
Select from the most commonly used minutes below.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Objectives: Generate and describe sequences. Vocabulary:
David Burdett May 11, 2004 Package Binding for WS CDL.
Create an Application Title 1Y - Youth Chapter 5.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Media-Monitoring Final Report April - May 2010 News.
Break Time Remaining 10:00.
Factoring Quadratics — ax² + bx + c Topic
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Briana B. Morrison Adapted from William Collins
K ONTRAK PERKULIAHAN I Made Gatot K, ST. MT 1. PENILAIAN Kehadiran min 75 % : 5 % Tugas: 20 % Diskusi / Presentasi: 20 % UTS: 25 % UAS: 30 % TOTAL: 100%
1 The Royal Doulton Company The Royal Doulton Company is an English company producing tableware and collectables, dating to Operating originally.
Operating Systems Operating Systems - Winter 2010 Chapter 3 – Input/Output Vrije Universiteit Amsterdam.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
TESOL International Convention Presentation- ESL Instruction: Developing Your Skills to Become a Master Conductor by Beth Clifton Crumpler by.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Biology 2 Plant Kingdom Identification Test Review.
1..
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
1 Termination and shape-shifting heaps Byron Cook Microsoft Research, Cambridge Joint work with Josh Berdine, Dino Distefano, and.
Artificial Intelligence
Before Between After.
Slide R - 1 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Prentice Hall Active Learning Lecture Slides For use with Classroom Response.
12 October, 2014 St Joseph's College ADVANCED HIGHER REVISION 1 ADVANCED HIGHER MATHS REVISION AND FORMULAE UNIT 2.
Subtraction: Adding UP
Bell Busters! Unit 1 #1-61. Purposes of Government 1. Purposes of government 2. Preamble to the Constitution 3. Domestic tranquility 4. Common defense.
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
One-Degree Imager (ODI), WIYN Observatory What’s REALLY New in SolidWorks 2010 Richard Doyle, User Community Manager inspiration.
Essential Cell Biology
Converting a Fraction to %
Numerical Analysis 1 EE, NCKU Tien-Hao Chang (Darby Chang)
CSE20 Lecture 15 Karnaugh Maps Professor CK Cheng CSE Dept. UC San Diego 1.
Clock will move after 1 minute
famous photographer Ara Guler famous photographer ARA GULER.
PSSA Preparation.
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 11 Simple Linear Regression.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Thirteenth International Meeting on DNA Computers
Presentation transcript:

1 Thirteenth International Meeting on DNA Computers June 5, 2007 Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues Eric DemaineMassachusetts Institute of Technology Martin DemaineMassachusetts Institute of Technology Sandor FeketeTechnische Universität Braunschweig Mashood IshaqueTufts University Eynat RafalinGoogle Robert SchwellerUniversity of Texas Pan American Diane SouvaineTufts University

2 Tile Assembly Model (Rothemund, Winfree, Adleman) T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 Tile Set: Glue Function: Temperature: x ed cba

3 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)

4 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)

5 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)

6 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)

7 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)

8 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)

9 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)

10 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)

11 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)

12 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e Tile Assembly Model (Rothemund, Winfree, Adleman)

13 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba x abc d e Tile Assembly Model (Rothemund, Winfree, Adleman)

14 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 abc d e x x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)

15 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx Tile Assembly Model (Rothemund, Winfree, Adleman)

16 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx x Tile Assembly Model (Rothemund, Winfree, Adleman)

17 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx xx Tile Assembly Model (Rothemund, Winfree, Adleman)

18 BEAKER Start with initial Tileset Non-Staged Assembly -Assembly occurs within 1 single container - Assembly occurs within 1 single stage

19 BEAKER After some time... Start with initial Tileset Various Producible Supertiles exist in solution Non-Staged Assembly -Assembly occurs within 1 single container - Assembly occurs within 1 single stage

20 BEAKER After some time... After enough time... Start with initial Tileset Various Producible Supertiles exist in solution Only Terminally Produced assemblies remain Non-Staged Assembly -Assembly occurs within 1 single container - Assembly occurs within 1 single stage

21 Staged Assembly

22 Staged Assembly -Pour multiple bins into a single bin

23 Staged Assembly -Pour multiple bins into a single bin -Split contents of any given bin among multiple new bins

24 Staged Assembly -Pour multiple bins into a single bin -Split contents of any given bin among multiple new bins

25 Staged Assembly

26 Staged Assembly Assembly occurs in a sequence of stages, and assemblies can be separated into separate bins Bin Complexity: 4 Stage Complexity: 3 Mix pattern:

27 Staged Assembly Assembly occurs in a sequence of stages, and assemblies can be separated into separate bins Bins = Space Complexity Stages = Time Complexity Bin Complexity: 4 Stage Complexity: 3

28 Staged Assembly Assembly occurs in a sequence of stages, and assemblies can be separated into separate bins Bin Complexity: 4 Stage Complexity: 3 Our Goal: Given a target shape, design mixing algorithms that: –Use only O(1) tiles/glues to build target shape. –Are efficient in terms of: Bin complexity Stage complexity.

29 Simple Example: 1 x n line

30 Simple Example: 1 x n line

31 Simple Example: 1 x n line

32 Simple Example: 1 x n line stage i stage i+3

33 Simple Example: 1 x n line stage i stage i+3 tiles / gluesO(1) = 3 BinsO(1) StagesO(log n) Staged Assembly 1 x n line

34 Simple Example: 1 x n line stage i stage i+3 tiles / gluesO(1) = 3 BinsO(1) StagesO(log n) Staged Assembly 1 x n line tiles / glues (n) Bins1 Stages1 Non-Staged Model 1 x n line

35 n x n Square

36 n x n Square Base Case 1 x n line: Use line algorithm tiles / gluesO(1) BinsO(1) StagesO(log n) Staged Assembly n x n square

37 n x n Square: unstable?

38 n x n Square: unstable?

39 n x n Square: unstable?

40 n x n Square: Full Connectivity Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond [Rothemund, Winfree STOC 2000]

41 n x n Square: Full Connectivity Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond

42 n x n Square: Full Connectivity Shifting Problem Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond

43 n x n Square: Full Connectivity Shifting Problem Jigsaw Technique: Use Geometry to enforce proper binding. Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond

44 n x n Square: Full Connectivity Jigsaw Technique: Use Geometry to enforce proper binding. Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond

45 n x n Square: Full Connectivity Jigsaw Technique: Use Geometry to enforce proper binding. Full Connectivity Constraint: All adjacent tiles in assembled shape must share a full strength bond

46 n x n Square: Full Connectivity tiles / gluesO(1) BinsO(1) StagesO(log n) Temperature1 Staged Assembly Fully Connected n x n square tiles / glues (log n / log log n) Bins1 Stages1 Temperature2 Non-Staged Model Fully Connected n x n square [adleman, cheng, goel, huang STOC 2001]

47 Arbitrary Shapes Spanning Tree Method Jigsaw Method for non-hole Shapes Simulation Method

48 Simulate Large Tilesets

49 Simulate Large Tilesets

50 Simulate Large Tilesets

51 Simulate Large Tilesets

52 Simulate Large Tilesets

53 Simulate Large Tilesets

54 Simulate Large Tilesets

55 c Simulate Large Tilesets b a...

56 Simulate Large Tilesets c b a tiles / gluesO(1) BinsO(|T|) StagesO(log log |T|) Simulate temp=1 tileset T tiles / gluesO(1) BinsO(n) StagesO(log log n) ScaleO(log n) Arbitrary n tile Shape

57 Arbitrary Shape Assembly Spanning Tree Method Jigsaw Method for non-hole Shapes Simulation Method tiles / gluesO(1) BinsO(n) StagesO(n) Connectivity FULL Scale2 GeneralityHole Free Jigsaw Method tiles / gluesO(1) BinsO(log n) StagesO(diameter) Connectivity Partial Scale1 GeneralityALL Spanning Tree Method tiles / gluesO(1) BinsO(n) StagesO(log log n) Connectivity FULL ScaleO(log n) GeneralityALL Simulation Method

58 tiles / gluesO(1) BinsO(1) StagesO(log n) Staged Assembly n x n square First Result: What if we have B bins? Near Optimal Tradeoff: Bins versus Stages (Crazy Mixing)

59 tiles / gluesO(1) BinsO(1) StagesO(log n) Staged Assembly n x n square First Result: What if we have B bins? B^2 edges, Can encode B^2 Bits of information Per stage. Near Optimal Tradeoff: Bins versus Stages (Crazy Mixing)

60 Near Optimal Tradeoff: Bins versus Stages (Crazy Mixing) tiles / gluesO(1) BinsB Stages ( log n / B^2) Lower Bound for almost all n tiles / gluesO(1) BinsB Stages ( log n / B^2 + log B) Upper Bound Assembly of n x n squares with B bins: Upper bound technique: -Encode B^2 bits describing target square at each stage -Combine with Simulation macro tiles.

61 Staged Assembly permits various techniques for the assembly of arbitrary shapes with O(1) tiles/glues. For some shapes (squares) we achieve near optimal tradeoffs in bin versus stage complexity. Staged assembly may shed light on natural assembly systems –Cells of body perhaps serve as bins –Staged assembly emphasizes importance of geometric shape for bonding, perhaps similar to protein shape determining function. Conclusions

62 Problems with model? Applications in DNA code design using synthetic DNA words? Incorporating produced structures as well as terminally produced structures Experiments, simulations Apply more intense mixing patterns to general shapes Tradeoffs between tile complexity and bin/stage complexity. Simulation of t=2 systems Future Work

63 Thanks for listening. Questions?