Information Visualization Chap. 11 November 25 , 2008 CDS 301 Fall, 2008 Jie Zhang Copyright ©
Information Visualization FFmpeg file hierarchy: 5 layers, 42 folders, 785 files MPEG: Moving Pictures Expert Group Codec: coding/decoding FFMPEG: Fast Forward MPEG gif: Graphics Interchange Format png: Portable Network Graphics
Infovis versus Scivis Scientific Visualization (Scivis) Visualize physical Data: continuous quantities over compact domain Information Visualization (Infovis) Visualize abstract data: texts over an information system E.g., computer file systems, databases, documents, stocks etc Visualization: “form a mental model of the subject” 3
Outline 11.1. Introduction 11.2. What is Infovis? 11.3. Infovis versus Scivis 11.4. Table Visualization (by ) 11.5. Visualization of Relations 11.5.1. Tree Visualization (by ) 11.5.2. Graph Visualization (by ) 11.6. Multivariate Data Visualization (by ) 11.7. Text Visualization (by ) 4
Dataset Dataset of Scientific Visualization (Scivis) Data Domain: consists of sampling points and cells which form a geometric grid over a compact region Data attribute: numerical quantities of different dimensions Interpolation functions: reconstruct a piecewise continuous signal over the cells in the grid 5
Data Domain Data Domain: Infovis does not have spatial placement: no points, no cells. Space placement is referred to as layout, which is subjective Data are sampled on data sets or tuples Different data sets have relations 6
Data Domain Scivis Infovis 7
Dataset Data attributes: Infovis has more data types than numerical values Data Type Attribute Domain Operations Examples nominal Unordered set Comparison (=) Text, references, syntax elements ordinal Ordered set Ordering (=, <, >) Ratings (e.g., bad, average, good) discrete Integer Integer arithmetic Line of code continuous real Real arithmetic Code metrics 8
Dataset Data attributes can be classified into Value data Relational data, e.g., association, reference, contain 9
Interpolation Infovis is inherently discrete, and can not carry out the interpolation 10
Summary Scivis Infovis Data Domain spatial, compact non-spatial, abstract Attribute Type numerical any data type Data Points Samples over the domain Tuples of attributes without spatial locaiton Cells Support interpolation Describe relations Interpolation Piecewise continuous inexistent 11
Information Visualization (continued) Information Visualization Chap. 11 Nov. 25, 2008 12
Table Visualization 13
Table Visualization 14
Table Visualization 15
Tree Visualization 16
Tree Visualization 17
Tree Visualization 18
Tree Visualization 19
Tree Visualization 20
Tree Visualization 21
Tree Visualization 22
Tree Visualization 23
Graph Visualization 24
Graph Visualization 25
Graph Visualization 26
Graph Visualization 27
Graph Visualization 28
Graph Visualization 29
Multivariate Data Visualization 30
Multivariate Data Visualization 31
Multivariate Data Visualization 32
Text Visualization 33
Text Visualization 34
Text Visualization 35
Text Visualization 36
End of Chap. 11 37