CFD Analysis for ITER FW/Shield Designs Alice Ying, Ryan Hunt, Hongjie Zhang (UCLA) Dennis Youchison James Bullock, Mike Ulrickson (SNL) July 8, 2009 MIT,

Slides:



Advertisements
Similar presentations
Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
Advertisements

Heat Transfer to Solids in a Flowing Fluid
Further Modifications to the ARIES T-tube Divertor Concept Jeremy Burke ARIES-Pathways Project Meeting Jan 26,
RFQ End Flange Dipole Tuner Finger Cooling. Basis of Study Need multi-purpose end flange –Adjustable dipole mode suppression fingers –Beam current transformer.
#250.
Ss Hefei, China July 19, 2011 Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions Contact: Flowing.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Estimation of Convective Heat Transfer Coefficient
5931/ / PFC Meeting D.L. Youchison, M.A. Ulrickson, J.H. Bullock Sandia National Laboratories Sandia is a multiprogram laboratory operated.
CFD and Thermal Stress Analysis of Helium-Cooled Divertor Concepts Presented by: X.R. Wang Contributors: R. Raffray and S. Malang University of California,
DL Youchison 5931/ Boiling Heat Transfer in ITER First Wall Hypervapotrons Dennis Youchison, Mike Ulrickson and Jim Bullock Sandia National Laboratories.
Extended Surface Heat Transfer
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
Thermo Fluid Design Analysis of TBM cooling schemes M. Narula with A. Ying, R. Hunt, S. Park ITER-TBM Meeting UCLA Feb 14-15, 2007.
WACH4 26/11/2002Julien Cogan CERN/EP/CMA-1- M0 COOLING IN H4 Cooling is a key issue : –APD gain : ~ -2.4 % /  C –XTAL response (scintillation) : ~ -1.9.
First Wall Thermal Hydraulics Analysis El-Sayed Mogahed Fusion Technology Institute The University of Wisconsin With input from S. Malang, M. Sawan, I.
Thermo-fluid Analysis of Helium cooling solutions for the HCCB TBM Presented By: Manmeet Narula Alice Ying, Manmeet Narula, Ryan Hunt and M. Abdou ITER.
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
March 16-17, 2000ARIES-AT Blanket Design and Power Conversion, US/Japan Workshop/ARR ARIES-AT Blanket Design and Power Conversion The ARIES Team Presented.
MuCool Absorber Review meeting FermiLab, Chicago 21 – 22 February 2003 Fluid Flow and Convective Heat Transfer Modelling by Wing Lau & Stephanie Yang Oxford.
The shield block is a modular system made up of austenitic steel SS316 LN-IG whose main function is to provide thermal and nuclear shielding of outer components.
MICE Collaboration meeting at Columbia University, New York 12 – 14 June 2003 How Liquid Hydrogen behaves thermally in a Convective Absorber by Wing Lau,
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Parametric Design Curves for.
June19-21, 2000Finalizing the ARIES-AT Blanket and Divertor Designs, ARIES Project Meeting/ARR ARIES-AT Blanket and Divertor Design (The Final Stretch)
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Extrapolating Experimental Results for Model Divertor.
March 20-21, 2000ARIES-AT Blanket and Divertor Design, ARIES Project Meeting/ARR Status ARIES-AT Blanket and Divertor Design The ARIES Team Presented.
Verification and Validation Diagram of a Control Rod Guide Tube on top of a hot box dome that has been gradually heating up. A hole was drilled here to.
 This presentation deals with solar water heaters.  There are two categories (passive, active)  There are two common types (conventional, vacuum tubes);
FAZIA DAYS, Bologna 10-12/feb/2010, WG8, Emanuele Vanzanella (mechanics & cooling), Alfonso Boiano (electronics) ELECTRONICS HOLDER & COOLING SYSTEM Side.
1 Recent Progress in Helium-Cooled Ceramic Breeder (HCCB) Blanket Module R&D and Design Analysis Ying, Alice With contributions from M. Narula, H. Zhang,
ASIPP EAST Overview Of The EAST In Vessel Components Upgraded Presented by Damao Yao.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Update on Thermal Performance of the Gas- Cooled.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Updated Thermal Performance of.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, M. D. Hageman, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Extrapolating.
1 Calorimeter Thermal Analysis with Increased Heat Loads September 28, 2009.
ESS Cryogenic Distribution System for the Elliptical Linac CM - CDS requirements Preliminary Design Review Meeting, 20 May 2015, ESS, Lund, Sweden J. Polinski.
GLAST LAT ProjectDOE/NASA Mechanical Systems Peer Review, March 27, 2003 Document: LAT-PR-0XXXX Section 5.1 Grid Box Design 1 GLAST Large Area Telescope:
HCCB TBM Mechanical Design R. Hunt, A. Ying, M. Abdou Fusion Science & Technology Center University of California Los Angeles May 11, 2006 Presented by.
Thermal Model of MEMS Thruster Apurva Varia Propulsion Branch Code 597.
Engineering Overview of ARIES-ACT1 M. S. Tillack, X. R. Wang and the ARIES Team Japan/US Workshop on Power Plant Studies and Advanced Technologies
Neutronics Analysis for K-DEMO Blanket Module with Helium coolant June 26, 2013 Presented by Kihak IM Prepared by Y.S. Lee Fusion Engineering Center DEMO.
ITER test plan for the solid breeder TBM Presented by P. Calderoni March 3, 2004 UCLA.
July 4 th 20061Moritz Kuhn (TS/CV/DC/CFD) CERN July 4 th 2006 Moritz Kuhn Cooling of the P326 Gigatracker silicon pixel detector (SPIBES) CFD – Cooling.
1 Parametric Thermal-Hydraulic Analysis of TBM Primary Helium Loop Greg Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI.
CLAS12-RICH Mechanical Design Status-Report CLAS12 RICH Review September 5-6 th 2013 S. Tomassini, D. Orecchini1 D. Orecchini, S. Tomassini.
ITER In-Vessel Coils (IVC) Interim Design Review Thermal Structural FEA of Feeders A Brooks July 27, 2010 July 26-28, 20101ITER_D_353BL2.
Helium-Cooled Divertor Options and Analysis
M. Gomez Marzoa1 13th December 2012 PSB-Dump: first CFD simulations Enrico DA RIVA Manuel GOMEZ MARZOA 13 th December 2012.
DCLL ½ port Test Blanket Module thermal-hydraulic analysis Presented by P. Calderoni March 3, 2004 UCLA.
Simple CFD Estimate of End Flange Tuner Finger Cooling.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills and M. D. Hageman G. W. Woodruff School of Mechanical Engineering Correlations for Divertor Thermal-Hydraulic.
Multi-Microhannel Cooling Model Silicon Micro-Cooling Element to be applied on a pixel detector of CERN (ALICE) / Parametric Study Footprint area: (6.0.
AAE 450 – Spacecraft Design Sam Rodkey 1 Active Thermal Control Design Sam Rodkey March 1 st, 2005 Project Management Project Manager.
E. Da Riva/M. Gomez Marzoa1 WG4 Meeting - 27th June 2012 Air Cooling by means of carbon fiber structure Enrico DA RIVA (EN-CV-PJ) Manuel GOMEZ MARZOA (EN-CV-PJ)
Cooling of GEM detector CFD _GEM 2012/03/06 E. Da RivaCFD _GEM1.
1 A Self-Cooled Lithium Blanket Concept for HAPL I. N. Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI With contributions.
Engineering of the power prototype of the ESRF HOM damped cavity* V. Serrière, J. Jacob, A. Triantafyllou, A.K. Bandyopadhyay, L. Goirand, B. Ogier * This.
First Wall Panel - Overview
Thermal-hydraulic analysis of unit cell for solid breeder TBM
DCLL TBM Reference Design
Microfluidic devices for thermal management
CFD-Team Weekly Meeting - 8th March 2012
Integrated Design: APEX-Solid Wall FW-Blanket
Modified Design of Aries T-Tube Divertor Concept
DCLL TBM Design Status, Current and future activities
Phoebus 2A, Nuclear Thermal Element
Electro-Thermal Analysis of Contact Resistance
DCLL TBM Design Status FNST Meeting, August 12-14, 2008, UCLA
FloXpress Lecture MECH 3550 Prof Swanson.
PANDA Collaboration Meeting
Presentation transcript:

CFD Analysis for ITER FW/Shield Designs Alice Ying, Ryan Hunt, Hongjie Zhang (UCLA) Dennis Youchison James Bullock, Mike Ulrickson (SNL) July 8, 2009 MIT, Boston

Count the pieces: 560 Be tiles/40 pieces of CuCrZr heat sinks/20 pieces of SS bodies/80 SS tubes inside Cu heat sinks/52 plugs 40 welding pieces/Manifold, connectors, etc. First wall / shield -- Geometric Complexity BLKT_04_FW_2009_DESIGN #2PTYX7

Total: 8 kg/s mass flow rate 20 circuits each half module 0.2 kg/s per finger 80 circuits fed from a single inlet pipe Velocity plot in water volume for FW Panel for BM_04 Design Issues: Flow non-uniformity and manifold design Hot spots and accommodation of local high heat flux Pressure drop optimization Structure thermomechanical optimization CFD Challenges Large problem sizes Multiple materials Geometric complexity Temperature depended properties Incorporation of complex thermal loading conditions for other codes

Contact!! It may be interesting to do CFD in one finger. Preparation of CFD meshes and removal of all interferences and errors - (there are many details- Impact on fabrication/cost )

In some cases, analysis can be done for a smaller compartment (here a SS panel of the FW) to reveal local design feature. at outlet at turn-around Each SS panel houses 2 fingers Inlet mass flow rate: 0.4 kg/s CFD Analysis for SS Panel 1 (BLKT_04_FW_2009_DESIG N #2PTYX7) Flow around the turn around and near the outlet collector show interesting recirculation flow.

Velocity magnitudes at different pipe mid-planes show slightly higher values for the top two pipes m/s Uniformity of pipe velocity?

Be surface temperatures under 5 MW/m 2 Cu wall temperature (at Cu/H 2 O interface) Max. Cu surface temperature Max. Be surface temperature SC/Tetra result* 1-D empirical correlation SC/Tetra result (2 grooves) 1-D (with Cu k) 3 mm thick SC/Tetra result 0.2 kg/s (3 grooves) (323) (368 W/m 2 K) kg/s (3 grooves) (310) (368) kg/s (toothless) (366.5) kg/s (toothless) (367)804 1.P. Chen, et. al. Correlation for Hypervaportron (2008) 2.Shah correlation for flat surface (1977) 3 rd Be tile (5 cm wide) exposed to 5 MW/m 2 1 st, 2 nd and 4 th Be tiles exposed to 0.2 MW/m g/s Hypervaportron Finger Heat spread to the neighboring Cu results in a 30C lower than what reported last week Adiabatic BC applied to surfaces: no heat communication with neighboring tiles except through Be/Cu contact Next: 5 MW/m 2 applied to both half of the 2 nd and 3 rd tiles Hypervaportron heat transfer validation

3 grooves 2 grooves Max Cu surface Temp = 308 C Max Cu surface Temp = 310 C Velocity characteristics under the grooves – data used for groove optimization

FW temperature response to single strip high heat flux of 5 MW/m2 (At toroidal location 0.282<y<0.332) The rest of the surface is exposed to 0.2 MW/m 2 Mass flow rate: 8 kg/s total or 200 g/s per finger simplified model (without manifold) Maximum Be surface temperature ~778 o C Previously, a single finger exposed to similar conditions, the maximum surface temperature was reported at 769 o C

at Y=0.35 Some fluid velocity details show flow non-uniformity

CFD/thermal analysis for the BM04 shield block at different radial planes (color quantities: velocity m/s inside the pipe; temperature o C: SS) Russian Design -4 series circuits -radial flow paths -large water volume fraction, -relatively cold compared with other designs. IO is still yet to decide which design option should be considered

2 inlets each with 4 kg/s Water enters the shield through the central pipe and distributes into 2 passes poloidally at the end of the pipe (x ~0.64 m) Water leaves the shield through 4 outlet holes in this model CFD analysis helps to see how water flows within the module

BLANKET_2009_DESIGN#2PTXPT the IO CAD transmitted to the US has a hole – water leaks out. Hole found in slot Alternate shield design utilizing poloidal flow paths. CFD analysis reveals design needs much improvement to fix the flow non-uniformity and consequent hot spots.

CFD analysis for the modified BM04-shield Goal: to evaluate whether the back of the shield will be too hot under long pulse (3000 s) runs (using steady state run for initial check) The model includes a coaxial connector Cover plates modified Modified BM04 model Previous model Modified model

CFD Analysis for BM04 Model BLKT_04_BSM_2009_DESIGN#2PCQZA-C (US fixed) CFD model total nuclear heat to BM04 = MW Water= MW Steel = MW (MCNP calculated total nuclear heat = MW with steel = MW ) CFD water outlet temperature= C (Inlet T= 100 C; inlet mass flow rate = 8 kg/s) Fractional heat balance (Q input /Q outout ) = Steady State Analysis Water volume = m 3 Steel volume= m 3 P = Pa

Plan X = 3.78 Temperature gradient plot shows heat flow directions and the relative location with respect to the coolant pipes Maximum temperature at the back ~ 250 C Shield maximum temperature = 266.1C

Velocity Distribution for BLKT_04_BSM Inlet Plan X=3.78 Some flow non-uniformity corresponding to ~ 30 o C temperature non-uniformity Again, use of parallel flow paths in the design results in some flow non- uniformity

The Next Step: Pulsed Operation Analysis, Initial result: Steel Surface Temperature at the Plasma Shutdown after Ramp-down Peak temperature drops ~19 degree lower than the steady state peak, but its location shifts to the back Starting with steady state temperature conditions (time =0). Power is completely off at 60 s No flow transient is observed, water velocity distribution remains the same during power ramp and down

Main areas of future work for FW / Blanket / Divertor He cooled first wall and divertor simulations for TBMs and Demo Divertors Coupled HIMAG / CFD / Neutronics / Structural codes for virtual blanket