Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
2D and 3D MOCART scoring systems assessed by 9
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
On how degeneration influences load-bearing in the cartilage–bone system: a microstructural and micromechanical study  A. Thambyah, Ph.D., N. Broom, Ph.D. 
Diffusion of Gd-DTPA2− into articular cartilage
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Computed tomography detects changes in contrast agent diffusion after collagen cross- linking typical to natural aging of articular cartilage  H.T. Kokkonen,
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
H. Shao, C. Pauli, S. Li, Y. Ma, A. S. Tadros, A. Kavanaugh, E. Y
The layered structure of the articular surface
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
Functional assessment of strains around a full-thickness and critical sized articular cartilage defect under compressive loading using MRI  L. Zevenbergen,
R. Mhanna, E. Öztürk, P. Schlink, M. Zenobi-Wong 
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
B. Kaleem, F. Maier, H. Drissi, D.M. Pierce 
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support  B.G.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage  L. Zevenbergen,
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
UTE bi-component analysis of T2* relaxation in articular cartilage
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy  Y. Song, M.S., J.M. Greve, M.S., D.R. Carter,
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
Nonlinear optical microscopy of articular cartilage
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Removal of the superficial zone of bovine articular cartilage does not increase its frictional coefficient  R. Krishnan, M. Caligaris, R.L. Mauck, C.T.
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K. E. Keenan, T. F. Besier, J. M. Pauly, E. Han, J. Rosenberg, R. L
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
M. E. Bowers, B. S. , N. Trinh, M. S. , G. A. Tung, M. D. , F. A. C. R
Presentation transcript:

The structural adaptations in compressed articular cartilage by microscopic MRI (μMRI) T2 anisotropy  Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage  Volume 12, Issue 11, Pages 887-894 (November 2004) DOI: 10.1016/j.joca.2004.07.006 Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 The compression device, which was made completely out of nonmetallic, nonmagnetic materials, and can be incorporated inside the 5-mm NMR tube within the RF coil. (a) The device consists of a base for the specimen and a top layer that can be compressed against the cartilage surface with the help of micro fasteners. (b) A compressed cartilage–bone plug inside the NMR tube. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 (a) T2-weighted proton images (at ∼0°) of control cartilage, at ∼12% and ∼22% strain. (b) Calculated T2 maps (at ∼0°) of control cartilage, at ∼12% and ∼22% strain. (c) T2-weighted proton images (at ∼55°) of control cartilage, at ∼12% and ∼22% strain. (d) Calculated T2 maps (at ∼55°) of control cartilage, at ∼12% and ∼22% strain. The images shown above are from the same sample at different stages. The numbered vertical lines on the side of control images in (a) and (b) correspond to the following: 1: saline, 2: cartilage, 3: bone, and 4: the plastic layer. T2 weighting for (a) and (c) was 16ms. The angle is defined as the angle between the normal to the articular surface of cartilage and the direction of the magnetic field (B0). Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 T2 profiles of a control sample with and without the top plastic layer at 0° and 55°. The plastic layer was touching the top of the cartilage sample with no compression force. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 T2 profiles from one sample at three stages: control, compressed at ∼12%, and compressed at ∼22%. The graphs correspond to T2 profiles: (a) vs absolute depth at ∼0°; (b) vs relative depth at ∼0°; (c) vs absolute depth at ∼55°; and (d) vs relative depth at ∼55°. The error bars in graph (b) and (d) represent the variation in T2 when averaged within the selected region of interest in the middle of the specimen. The vertical lines in graph (b) demonstrate the shift of the middle of the transitional zone upon compression. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Changes in the ‘bulk’ T2 in cartilage as a function of the thickness reduction (strain) when the specimens were oriented approximately at 0° and 55° in the magnet. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Effect of compression on the thickness of individual zones. The left vertical axis represents the thickness percentage of superficial and transitional zone. The right vertical axis represents the thickness percentage of radial zone. T2 profiles from the control and compressed cartilage (at different strain values) were used to sub-divide the entire depth of tissue into three histological zones: (superficial, transitional, and radial zone). Each data point represents the percentage thickness of that particular zone over the entire thickness at the given strain value. The error bars represent the margin of error of determining the zone boundaries calculated from the standard deviation of each T2 profile. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 A schematic model for the orientational adaptation of collage fibers across the cartilage depth as a result of mechanical compression based on T2 anisotropy data. Each solid line represents the overall orientation of the collagen fibrils at this particular depth in cartilage; these lines are numbered to track the changes in zone boundaries upon compression. The left figure (a) shows the three classical zones in uncompressed articular cartilage (SZ: superficial zone, TZ: transitional zone, and RZ: radial zone). The right figure (b) shows the orientational changes at different depths due to external loading in cartilage. Osteoarthritis and Cartilage 2004 12, 887-894DOI: (10.1016/j.joca.2004.07.006) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions