Evolution with decaying magnetic field

Slides:



Advertisements
Similar presentations
SGR : a Waning Magnetar ? R. Turolla (University of Padova, Italy) with N. Rea, P. Esposito, S. Zane, J.A. Pons, G.L. Israel, S. Mereghetti, D.
Advertisements

MAGNETARS AS COOLING NEUTRON STARS WITH MAGNETARS AS COOLING NEUTRON STARS WITH INTERNAL HEATING INTERNAL HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin,
Glitches and precession. What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase.
Peeking into the crust of a neutron star Nathalie DegenaarUniversity of Michigan X-ray observations Interior properties Thermal evolution.
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
HOW MANY NEUTRON STARS ARE BORN RAPIDLY ROTATING? HOW MANY NEUTRON STARS ARE BORN RAPIDLY ROTATING? NIKOLAOS STERGIOULAS DEPARTMENT OF PHYSICS ARISTOTLE.
Evolution of isolated neutron stars: young coolers and old accretors Sergei Popov (SAI)
Magnetars origin and progenitors with enhanced rotation S.B. Popov, M.E. Prokhorov (Sternberg Astronomical Institute) (astro-ph/ )
Extensive population synthesis of neutron stars magnetic field decay and isolated accretors J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt, MNRAS (2010)
Cooling of Hybrid Neutron Stars Hovik Grigorian Yerevan State University Dubna, JINR Ladek Zdroj2008.
1 Magnetars origin and progenitors with enhanced rotation S.B. Popov, M.E. Prokhorov (Sternberg Astronomical Institute) (astro-ph/ ) Poster N 21.
Formation and evolution of magnetars Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt, MNRAS (2009) arXiv: A.Bogomazov,
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Two stories from the life of binaries: getting bigger and making magnetars Sergei Popov, Mikhail Prokhorov (SAI MSU) This week SAI celebrates its 175 anniversary.
Evolution with decaying magnetic field. 2 Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them.
Spin evolution of NSs. 2 Hard life of neutron stars There are about persons on Earth. How many do you know? There are about NSs in the Galaxy.
SGR activity in time Sergei Popov (SAI MSU) (HEA-2006, December 2006 Moscow, IKI)
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
1I Compstar meeting, Wroclaw 2008 Prospects of inferring dense matter properties from NS cooling: the magnetar masquerade the magnetar masquerade José.
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
Extensive population synthesis studies of isolated neutron stars with magnetic field decay Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin,
Evolution with decaying and re-emerging magnetic field.
Spin evolution of NSs.
Heating old neutron stars Andreas Reisenegger Pontificia Universidad Católica de Chile (UC) with Rodrigo Fernández formerly UC undergrad., now PhD student.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Unifying neutron stars Sergei Popov (SAI MSU) in collaboration with: Andrei Igoshev (SPbSU), and Roberto Turolla (Univ. Padova)
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
COOLING OF MAGNETARS WITH INTERNAL COOLING OF MAGNETARS WITH INTERNAL LAYER HEATING LAYER HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin, N. Shibazaki*,
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Radiation Properties of Magnetized Neutron Stars. RBS 1223
1 X-ray enhancement and long- term evolution of Swift J arXiv: Authors: O. Benli, S. Caliskan, U. Ertan et al. Reporter: Fu, Lei.
On Young Neutron Stars as Propellers and Accretors Ma Bo, Department of Astronomy, Nju, Nanjing Citations: Alpar,M.A.,APJ554,1245,2000 Illarionov and Sunyaev.1975.
Magnetic Field Decay and Core Temperature of Magnetars, Normal and MS pulsars Shuang-Nan Zhang 张双南 1 Yi Xie 谢祎 2 1. Institute of High Energy Physics 2.
Magnetic field evolution of neutron stars: linking magnetars and antimagnetars Sergei Popov (SAI MSU) (co-authors: A. Kaurov, A. Kaminker) PASA vol. 32,
Lecture 2 Spin evolution of NSs Sergei Popov (SAI MSU) Dubna “Dense Matter In Heavy Ion Collisions and Astrophysics”, July 2008.
Neutron star masses: dwarfs, giants and neighbors Sergei Popov (SAI MSU) Collaborators: M. Prokhorov H. Grigorian D. Blaschke.
Classificati on HR diagramStar clustersTermsLife cycle Life Cycles 2 $ 200 $ 200$200 $ 200 $400 $ 400$400 $ 400 $600 $ 600$600 $ 600 $ 600$600 $800.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
Evolution with decaying and re-emerging magnetic field.
Vortex Creep Against Toroidal Flux Lines and Implications for Pulsar Glitches and Neutron Star Structure Erbil Gügercinoğlu Istanbul University, Department.
Essential of Ultra Strong Magnetic field and Activity For Magnetars
Thermal evolution of neutron stars
Space Cowboys Odissey: Beyond the Gould Belt
Glitches and precession
Accreting isolated neutron stars
Accreting isolated neutron stars
Population synthesis of INSs
The Zoo Of Neutron Stars
Papers to read Or astro-ph/
Magnetic massive stars as magnetar progenitors
Speaker:Yi Xie Lunch Talk
Isolated Neutron Stars for ART, eROSITA and LOBSTER
Spin evolution of NSs.
Cooling of Neutron Stars
Accreting isolated neutron stars
Evolution with decaying and re-emerging magnetic field
Great unification for neutron stars: The last element?
Bayesian analysis for hybrid star
Star-planet coalescence
J.A. Pons, J.A. Miralles, P.A. Boldin, B. Posselt
Population synthesis of INSs
Thermal evolution of neutron stars
Evolution with decaying and re-emerging magnetic field
Spin evolution of NSs.
Lecture 4. Magnetars: SGRs and AXPs
Thermal evolution of neutron stars
Young Isolated Neutron Stars: Observations and Evolution
Magnetars: SGRs and AXPs
Presentation transcript:

Evolution with decaying magnetic field

Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them. Crustal field of core field? It is easy to decay in the crust. In the core the filed is in the form of superconducting vortices. They can decay only when they are moved into the crust (during spin-down). Still, in most of models strong fields decay.

Magnetars, field decay, heating A model based on field-dependent decay of the magnetic moment of NSs can provide an evolutionary link between different populations (Pons et al.). P Pdot PSRs M7 B=const Magnetars CCOs

Period evolution with field decay An evolutionary track of a NS is very different in the case of decaying magnetic field. The most important feature is slow-down of spin-down. Finally, a NS can nearly freeze at some value of spin period. Several episodes of relatively rapid field decay can happen. Number of isolated accretors can be both decreased or increased in different models of field decay. But in any case their average periods become shorter and temperatures lower. astro-ph/9707318

Magnetic field decay vs. thermal evolution Magnetic field decay can be an important source of NS heating. Heat is carried by electrons. It is easier to transport heat along field lines. So, poles are hotter. (for light elements envelope the situation can be different). Ohm and Hall decay arxiv:0710.0854 (Aguilera et al.)

Joule heating for everybody? It is important to understand the role of heating by the field decay for different types of INS. In the model by Pons et al. the effect is more important for NSs with larger initial B. Note, that the characteristic age estimates (P/2 Pdot) are different in the case of decaying field! arXiv: 0710.4914 (Aguilera et al.)

Magnetic field vs. temperature The line marks balance between heating due to the field decay and cooling. It is expected that a NS evolves downwards till it reaches the line, then the evolution proceeds along the line: Selection effects are not well studied here. A kind of population synthesis modeling is welcomed. Teff ~ Bd1/2 Pons et al. There is an extra free parameter b. It is the ratio B^2/B_d^2. B - field in the crust due to surrents, B_d – dipole field in the crust. (astro-ph/0607583)

P-Pdot diagram and field decay τOhm=106 yrs τHall=104/(B0/1015 G) yrs (Popov et al. MNRAS 2009. arXiv: 0910.2190)

Decay parameters and P-Pdot τOhm=107 yrs τHall =102/(B0/1015 G) τOhm=106 yrs τHall =103/(B0/1015 G) τOhm=106 yrs τHall =104/(B0/1015 G) Longer time scale for the Hall field decay is favoured. It is interesting to look at HMXBs to see if it is possible to derive the effect of field decay and convergence.

Realistic tracks Using the model by Pons et al. (arXiv: 0812.3018) we plot realistic tracks for NS with masses 1.4 Msolar. Initial fields are: 3 1012, 1013, 3 1013, 1014, 3 1014, 1015 Color on the track encodes surface temperature. Tracks start at 103 years, and end at 2 106 years. (Popov et al. MNRAS 2009)

Joint description of NS evolution with decaying magnetic field The idea to describe all types of NSs with a unique model using one initial distribution (fields, periods, velocities) and to compare with observational data, i.e. to confront vs. all available observed distributions: P-Pdot for PSRs and other isolated NSs Log N – Log S for cooling close-by NSs Luminosity distribution of magnetars (AXPs, SGRs) …………….. The first step is done in Popov et al. (2009) The initial magnetic field distribution with <log B0>~13.25 and σ~0.6 gives a good fit. ~10% of magnetars.

Cooling curves with decay Magnetic field distribution is more important than the mass distribution.

Observational evidence? Kaplan & van Kerkwijk arXiv: 0909.5218

Extensive population synthesis: M7, magnetars, PSRs Using one population it is difficult or impossible to find unique initial distribution for the magnetic field M7 M7 Magnetars All three populations are compatible with a unique distribution. Of course, the result is model dependent. PSRs

Conclusions Decaying magnetic field results in additional heating of a NS and decreasing its spin-down rate Field decay can be more important for large initial fields, for “standard” fields (~1012 G) it is not important It is possible to describe different types of young NSs (PSRs, magnetars, M7 etc.) in the model with decaying magnetic field

Papers to read Pons, Geppert “Magnetic field dissipation in neutron star crusts: from magnetars to isolated neutron stars ” astro-ph/0703267 Popov et al. “Population synthesis studies of isolated neutron stars with magnetic field decay” MNRAS (2009) arXiv: 0910.2190