Daily Check Factor: 3x2 + 10x + 8 Factor and Solve: 2x2 - 7x + 3 = 0.

Slides:



Advertisements
Similar presentations
3.2 Graphing Quadratic Functions in Vertex or Intercept Form
Advertisements

An equation for which the graph is a line Any ordered pair of numbers that makes a linear equation true. (9,0) IS ONE SOLUTION FOR Y = X - 9.
1.2 Graphing Quadratic Functions In Vertex or Intercept Form
Daily Check 1.Factor: 3x x Factor and Solve: 2x 2 - 7x + 3 = 0.
5.1 Graphing Quadratic Functions (p. 249) Definitions Definitions 3 forms for a quad. function 3 forms for a quad. function Steps for graphing each form.
5.1 Quadratic Function 11/30/12. Graph is a parabola Vocabulary Quadratic Function : a function that is written in the standard form: y = ax 2 + bx +
Daily Check #2 Factor the following quadratics... a) b) c)
Do Now: 1.Find the axis of symmetry: 2. See page 176 and do #19 Student will be able to transform a quadratic equation in standard form to vertex form.
5.1 Graphing Quadratic Functions Do now: Make up three examples of linear functions. How do you know they are linear? OBJ: to graph quadratic functions.
Graphing Quadratic Equations in Vertex and Intercept Form
Math I UNIT QUESTION: What is a quadratic function? Standard: MM2A3, MM2A4 Today’s Question: How do you graph quadratic functions in vertex form? Standard:
Do Now 1.Factor: f(x) = 3x x Factor f(x) = 2x 2 - 7x + 3.
Graphing Quadratic Equations
5.1 Graphing Quadratic Functions (p. 249) What does the graph of a quadratic function look like? What are the major parts of a quadratic function? How.
9.1 Graphing Quadratic Functions. Quadratic Function A function of the form y=ax 2 +bx+c where a≠0 making a u-shaped graph called a parabola. A function.
2.2 Graphing Quadratic Functions Definitions 3 forms for a quad. function Steps for graphing each form Examples Changing between eqn. forms.
3.2 Graphing Quadratic Functions in Vertex or Intercept Form Definitions Definitions 3 Forms 3 Forms Steps for graphing each form Steps for graphing each.
Graphing Quadratics in Vertex and Intercept Form Vertex Form y = a(x – h) 2 + k Intercept Form y = a(x – p)(x – q)
4.2A Graph Quadratic Functions in Vertex or Intercept Form Algebra II Algebra II.
5.1 Graphing Quadratic Functions (p. 249) Definitions Definitions 3 forms for a quad. function 3 forms for a quad. function Steps for graphing each form.
Warm Up. CCGPS Geometry Day 37 ( ) UNIT QUESTION: How are real life scenarios represented by quadratic functions? Today’s Question: How do we graph.
Homework. Quadratic Function A function of the form y=ax 2 +bx+c where a≠0 making a u-shaped graph called a parabola. A function of the form y=ax 2 +bx+c.
Daily Check 1.Factor: 3x x Factor and Solve: 2x 2 - 7x + 3 = 0.
4.1 and 4.2 Graphing Quadratic Functions Definitions Definitions 3 forms for a quad. function 3 forms for a quad. function Steps for graphing each form.
4.1/4.2 Graphing Quadratic Functions in Vertex or Intercept Form Definitions Definitions 3 Forms 3 Forms Steps for graphing each form Steps for graphing.
5.1 Quadratic Function 11/8/13. Graph is a parabola Vocabulary Quadratic Function : a function that is written in the standard form: y = ax 2 + bx + c.
Graphing Quadratic Functions
How To Graph Quadratic Equations Standard Form.
Graphing Quadratic Functions
Coefficients a, b, and c are coefficients Examples: Find a, b, and c.
Graphing Quadratic Functions
Investigating Characteristics of Quadratic Functions
y = ax 2 + bx + c where a  0. GRAPHING A QUADRATIC FUNCTION
5.1 Graphing Quadratic Functions (p. 249)
Graphing Quadratic Inequalities
5.1 Graphing Quadratic Functions (p. 249)
How to Graph Quadratic Equations
Objectives Transform quadratic functions.
3.2 Graphing Quadratic Functions in Vertex or Intercept Form
Graphing Quadratic Functions in Vertex or Intercept Form
Chapter 5 Quadratic Functions
How To Graph Quadratic Equations
Graphing Quadratic Functions In Vertex Form
3.2 Graphing Quadratic Functions in Vertex or Intercept Form
parabola up down vertex Graph Quadratic Equations axis of symmetry
Pick up and do the Bellwork Quiz 9-2. (1-6) Only
Graph and Solve Quadratic Inequalities
4.1 & 4.2 Graphing Quadratic Functions
GRAPHING QUADRATIC FUNCTIONS
9.1 Graph Quadratic Functions Alg. I
Find the x-coordinate of the vertex
Warm Up Graph:
9.1 Graphing Quadratic Functions
Quadratic Functions The graph of a quadratic function is called a parabola. The parent function is given as This is the parent graph of all quadratic functions.
Graphs of Quadratic Functions Day 1
How To Graph Quadratic Equations.
Graphing Quadratic Functions
Day 127 – Graphing Quadratics
GRAPHING PARABOLAS To graph a parabola you need : a) the vertex
Questions over tests?.
Daily Check Factor: 3x2 + 10x + 8 Factor and Solve: 2x2 - 7x + 3 = 0.
Graphs of Quadratic Functions Part 1
How To Graph Quadratic Equations.
Graphs of Quadratic Functions Day 2
Quadratic Functions Graphs
Parabolas.
4.1 Graphing Quadratic Functions
Graphing Quadratic Functions
Quadratic Functions By Libby Brown.
How To Graph Quadratic Equations.
Presentation transcript:

Daily Check Factor: 3x2 + 10x + 8 Factor and Solve: 2x2 - 7x + 3 = 0

UNIT QUESTION: What is a quadratic function? Math I UNIT QUESTION: What is a quadratic function? Standard: MM2A3, MM2A4 Today’s Question: How do you graph quadratic functions in vertex form? Standard: MM2A3.b.

3.2 Graphing Quadratic Functions in Vertex or Intercept Form Definitions 3 Forms Steps for graphing each form Examples Changing between eqn. forms

Quadratic Function A function of the form y=ax2+bx+c where a≠0 making a u-shaped graph called a parabola. Example quadratic equation:

Vertex- Axis of symmetry- The lowest or highest point of a parabola. The vertical line through the vertex of the parabola. Axis of Symmetry

Vertex Form Equation y=a(x-h)2+k If a is positive, parabola opens up If a is negative, parabola opens down. The vertex is the point (h,k). The axis of symmetry is the vertical line x=h. Don’t forget about 2 points on either side of the vertex! (5 points total!)

Vertex Form (x – h)2 + k – vertex form Each function we just looked at can be written in the form (x – h)2 + k, where (h , k) is the vertex of the parabola, and x = h is its axis of symmetry. (x – h)2 + k – vertex form Equation Vertex Axis of Symmetry y = x2 or y = (x – 0)2 + 0 (0 , 0) x = 0 y = x2 + 2 or y = (x – 0)2 + 2 (0 , 2) y = (x – 3)2 or y = (x – 3)2 + 0 (3 , 0) x = 3

Example 1: Graph y = (x + 2)2 + 1 Analyze y = (x + 2)2 + 1. Step 1 Plot the vertex (-2 , 1) Step 2 Draw the axis of symmetry, x = -2. Step 3 Find and plot two points on one side , such as (-1, 2) and (0 , 5). Step 4 Use symmetry to complete the graph, or find two points on the left side of the vertex.

Your Turn! Analyze and Graph: y = (x + 4)2 - 3. (-4,-3)

Example 2: Graph y= -.5(x+3)2+4 a is negative (a = -.5), so parabola opens down. Vertex is (h,k) or (-3,4) Axis of symmetry is the vertical line x = -3 Table of values x y -1 2 -2 3.5 -3 4 -4 3.5 -5 2 Vertex (-3,4) (-4,3.5) (-2,3.5) (-5,2) (-1,2) x=-3

Table of values with 4 points (other than the vertex? Now you try one! y=2(x-1)2+3 Open up or down? Vertex? Axis of symmetry? Table of values with 4 points (other than the vertex?

(-1, 11) (3,11) X = 1 (0,5) (2,5) (1,3)

Intercept Form Equation y=a(x-p)(x-q) The x-intercepts are the points (p,0) and (q,0). The axis of symmetry is the vertical line x= The x-coordinate of the vertex is To find the y-coordinate of the vertex, plug the x-coord. into the equation and solve for y. If a is positive, parabola opens up If a is negative, parabola opens down.

Example 3: Graph y=-(x+2)(x-4) Since a is negative, parabola opens down. The x-intercepts are (-2,0) and (4,0) To find the x-coord. of the vertex, use To find the y-coord., plug 1 in for x. Vertex (1,9) The axis of symmetry is the vertical line x=1 (from the x-coord. of the vertex) (1,9) (-2,0) (4,0) x=1

Now you try one! y=2(x-3)(x+1) Open up or down? X-intercepts? Vertex? Axis of symmetry?

x=1 (-1,0) (3,0) (1,-8)

Changing from vertex or intercepts form to standard form The key is to FOIL! (first, outside, inside, last) Ex: y=-(x+4)(x-9) Ex: y=3(x-1)2+8 =-(x2-9x+4x-36) =3(x-1)(x-1)+8 =-(x2-5x-36) =3(x2-x-x+1)+8 y=-x2+5x+36 =3(x2-2x+1)+8 =3x2-6x+3+8 y=3x2-6x+11

Challenge Problem Write the equation of the graph in vertex form.

We will not do intercept form. Assignment Day 1 -p. 65 #4,6,7,9,13,16 and Review for Quiz Day 2 – p. 67 #4,5,7,9,11-14 We will not do intercept form.