Searches for New Phenomena at CDF

Slides:



Advertisements
Similar presentations
Search for Large Extra Dimensions at the Tevatron Bob Olivier, LPNHE Paris XXXVI ème Rencontre de Moriond Mars Search for Large Extra Dimensions.
Advertisements

Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
CDF D0 Supersymmetry at the Tevatron R. Demina University of Rochester.
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
6/22/20151 Search of New Phenomena at the Tevatron Carlos Sánchez For the DØ and CDF experiments IFAE - Barcelona.
July 22 nd, 2005 A.Canepa, SUSY 2005, Durham 1 Search for chargino and neutralino in trilepton final states Anadi Canepa (Purdue University IN, USA) for.
Beate Heinemann, UC Berkeley and LBNL
Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004.
Lepton Photon Symposium LP01 Searches for New Particles Gail G. Hanson Indiana University.
Heavy charged gauge boson, W’, search at Hadron Colliders YuChul Yang (Kyungpook National University) (PPP9, NCU, Taiwan, June 04, 2011) June04, 2011,
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
1 Physics at Hadron Colliders Lecture III Beate Heinemann University of California, Berkeley and Lawrence Berkeley National Laboratory CERN, Summer Student.
ICHEP-2002, AmsterdamG. Bernardi, LPNHE- Paris Search for Low Scale Gravity & Extra Dimensions at HERA, LEP, and the Tevatron Mini-review talk ICHEP-2002.
CDF Status and Prospects for Run 2 Tara Shears. Introduction Accelerator / detector overview: Tevatron overview CDF overview Luminosity Physics prospects.
1 Rare Bottom and Charm Decays at the Tevatron Dmitri Tsybychev (SUNY at Stony Brook) On behalf of CDF and D0 Collaborations Flavor Physics and CP-Violation.
Higgs Searches at Tevatron Makoto Tomoto 戸本 誠 Fermilab/Nagoya University On behalf of the DØ & CDF Collaborations Tsukuba, April 21 st, 2006.
Electroweak and Related Physics at CDF Tim Nelson Fermilab on behalf of the CDF Collaboration DIS 2003 St. Petersburg April 2003.
1 Physics at Hadron Colliders Lecture IV CERN, Summer Student Lectures, July 2010 Beate Heinemann University of California, Berkeley Lawrence Berkeley.
1 Search for new physics in dilepton and diphoton final states with CDF Xin Wu (University of Geneva, Switzerland) On behalf of the CDF collaboration.
6/25/20041 Multi-fb -1 Predictions for the Physics Reach of the Tevatron Beate Heinemann University of Liverpool Tevatron Connection, 06/25/05 For the.
Jonathan HaysSearches with Leptons at the Tevatron Searches for New Physics With Leptons at the Tevatron Jonathan Hays Imperial College London On behalf.
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University CIPANP, June 2012.
CDF Status and Prospects for Run 2 Tara Shears. Introduction Accelerator / detector overview: Tevatron overview CDF overview Luminosity Physics prospects.
SUSY Searches at the Tevatron Rencontres de Moriond, QCD March 2006 Else Lytken, Purdue University for the CDF and D0 collaborations.
The Search For Supersymmetry Liam Malone and Matthew French.
The Higgs Boson Beate Heinemann, University of Liverpool  The Standard Model and Beyond  Tevatron and LHC  Tevatron Results on Higgs Searches  Future.
Searches for New Phenomena at CDF Beate Heinemann, University of Liverpool  Introduction  Supersymmetry:  Higgs  Squarks and Gluinos  Charginos and.
Dave Toback Texas A&M University HCP 2004 June 17 th Run II Searches for Supersymmetry Dave Toback Texas A&M University June 17 th 2004 HCP2004.
Status Of Tevatron Collider Experiments and its Physics 성균관 대학교 물리학과 유인태 유인태 Workshop on Physics at Hadron Colliders KIAS 2005 년 6 월 24 일.
RECENT RESULTS FROM THE TEVATRON AND LHC Suyong Choi Korea University.
Hiroshima Higgs Workshop 2006, Jan. 17 – 19, 2006 Higgs Searches at the Tevatron Kazuhiro Yamamoto (Osaka City University) for the CDF Collaboration 1.Tevatron.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
WIN 05, Delphi, Greece, June 2005Filip Moortgat, CERN WIN 05 Inclusive signatures: discovery, fast but not unambiguous Exclusive final states & long term.
1 Searches for New Physics with Jets PiTP, July 2013 Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
Beate Heinemann University of Liverpool For the CDF collaboration EPS 2003, Aachen, Physics Beyond the Standard Model with Photonic Final.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Searches for Supersymmetry at CDF Giulia Manca, University of Liverpool Wisconsin HEP Seminar Madison, 31 October 2006.
Searches for Supersymmetry in Multileptonic Signatures at CDF Giulia Manca, University of Liverpool Wine and Cheese Seminar Fermilab, 12 May 2006.
Searches for Resonances in dilepton final states Searches for Resonances in dilepton final states PANIC th -14 th November 2008, Eilat, ISRAEL A.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Search for Anomalous Production of Multi-lepton Events at CDF Alon Attal Outline  Motivation  R p V SUSY  CDF & lepton detection  Analysis  Results.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
Low Mass Standard Model Higgs Boson Searches at the Tevatron Andrew Mehta Physics at LHC, Split, Croatia, September 29th 2008 On behalf of the CDF and.
DØ Searches Yuri Gershtein On behalf of the DØ collaboration.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
Fourth Generation Leptons Linda Carpenter April 2011.
Higgs Searches at the Tevatron (Run I)
Determining the CP Properties of a Light Higgs Boson
Journées de Prospective
Search for a High Mass SM Higgs Boson at the Tevatron
Deep Inelastic Scattering 2006
Search for BSM at LHC Fayet Fest Paris November 9, 2016 Dirk Zerwas
The Electroweak, The Strong and the Unknown
Not-SUSY-Nor-Higgs Exotic Searches at TeVatron Run II
Yuri Gershtein for the DØ collaboration
Is Nature Supersymmetric?
Searches for New Phenomena at CDF
Searches for New Phenomena at CDF
Louisiana Tech University
Jessica Leonard Oct. 23, 2006 Physics 835
Tevatron Searches for Beyond-SM Higgs
SUSY Searches with ZEUS
Search for Narrow Resonance Decaying to Muon Pairs in 2.3 fb-1
SUSY SEARCHES WITH ATLAS
& Searches for Squarks and Gluinos at the Tevatron
Status of SUSY searches
Susan Burke, University of Arizona
Presentation transcript:

Searches for New Phenomena at CDF Beate Heinemann, University of Liverpool Introduction Supersymmetry: Higgs Squarks and Gluinos Charginos and Neutralinos Indirect search: Bsmm Signature Based: Dilepton and Diphoton Diphoton+X Summary and Outlook UC San Diego, March 14th 2006

The Standard Model H Matter is made out of fermions: quarks and leptons 3 generations Forces are carried by Bosons: Electroweak: ,W,Z Strong: gluons Higgs boson: Gives mass to particles Not found yet H UCSD, 03/14/06 B. Heinemann

What is Beyond the SM? Many good reasons to believe there is as yet unknown physics beyond the SM Many possible new particles/theories: Supersymmetry: Many flavours Extra dimensions (G) New gauge groups (Z’, W’,…) New fermions (e*, t’, b’, …) Leptoquarks Can show up! As subtle deviations in precision measurements In direct searches for new particles UCSD, 03/14/06 B. Heinemann

Supersymmetry can solve three There is a Lot Unknown The Standard Model only accounts for 4% of matter in Universe No candidate for Cold Dark Matter (≈25%) cannot explain large mass hierarchy in fermion sector: >10 orders of magnitude does not allow grand unification: electroweak and strong interactions do not unify has large radiative corrections in Higgs sector require fine-tuning of parameters Cannot explain matter-antimatter asymmetry? Supersymmetry can solve three of these problems Hubble Constant Matter Density SM UCSD, 03/14/06 B. Heinemann

What’s Nice about Susy? Unifications of forces possible With SUSY Dark matter candidate exists: The lightest neutral gaugino Radiative corrections to Higgs acquire SUSY corrections: No fine-tuning required Changes relationship between mW, mtop and mH: Also consistent with precision measurements of MW and mtop With SUSY UCSD, 03/14/06 B. Heinemann

CDF and the Tevatron UCSD, 03/14/06 B. Heinemann

Tevatron Run II _ p p World’s highest energy collider Tevatron Accelerator: Integrated luminosity >1.5 fb-1 by now: CDF data taking efficiency about 83% Integrate Ldt=4-8 fb-1 by 2009 _ p p √s(TeV) Dt(ns) L(cm-2 s-1) Run II 1.96 396 1.7x1032 Key parameter: N= • Ldt Delivered: 1.6 fb-1 Recorded: 1.3 fb-1 UCSD, 03/14/06 B. Heinemann

Tevatron Luminosity UCSD, 03/14/06 B. Heinemann

Measurement of Final State Objects with CDF SOLENOID h = 2.0 END WALL HAD CAL. CENTRAL OUTER TRACKER CLC CENTRAL HAD CALORIMETER PLUG HAD CAL. h = 1.0 h = 3.0 PLUG EM CAL. MUON CHAMBERS Silicon Vertex Detector CENTRAL EM CALORIMETER UCSD, 03/14/06 B. Heinemann

Measurement of Final State Objects with CDF Electron ID : Coverage : |h|<3.6 |h|<2 (w/ trk) ID eff. ~ 80-90% Photon ID : Coverage : |h|<2.8 ID eff. ~ 80% UCSD, 03/14/06 B. Heinemann

Measurement of Final State Objects with CDF Muon ID : Coverage : |h|<1 ID eff. ~ 90-100% UCSD, 03/14/06 B. Heinemann

Measurement of Final State Objects with CDF th ID t cone isolation Tau ID : Narrow iso. cluster Low # tracks p0 identification Coverage : |h|<1 ID eff. ~ 46% UCSD, 03/14/06 B. Heinemann

Measurement of Final State Objects with CDF x y z Lxy b do Jet ID : Cluster of CAL towers Coverage : |h|<3.6 Heavy Flavor Jet Tagging : Id HF jets via semi-leptonic decay Find soft lepton in jets Coverage : |h|<1 Id HF jets via finding displaced vertex Coverage : |h|<1.5 UCSD, 03/14/06 B. Heinemann

Supersymmetry UCSD, 03/14/06 B. Heinemann

Supersymmetry g ~ G SM particles have supersymmetric partners: Differ by 1/2 unit in spin Sfermions (squarks, selectron, smuon, ...): spin 0 gauginos (chargino, neutralino, gluino,…): spin 1/2 No SUSY particles found as yet: SUSY must be broken: breaking mechanism determines phenomenology More than 100 parameters even in “minimal” models! UCSD, 03/14/06 B. Heinemann

How to look for SUSY LSP = lightest neutralino (or sneutrino or stau) Typical search : NLSP  LSP + (SM particles), LSP undetected : Sensitivity: LEP: mNLSP ≈ s /2 ≤ 103.5 GeV Tevatron: 100- 500 GeV (depends on particle) Example topologies: Et squarks, gluinos chargino+neutralino GMSB UCSD, 03/14/06 B. Heinemann

Sparticle Cross Sections: Tevatron Cross Section (pb) 150 events produced so far (1.5 fb-1) T. Plehn, PROSPINO UCSD, 03/14/06 B. Heinemann

Sparticle Cross Sections: LHC Cross Section (pb) 100 events with 1 fb-1 T. Plehn, PROSPINO UCSD, 03/14/06 B. Heinemann

Sparticle Cross Sections: LHC 100 events with 1 pb-1 Cross Section (pb) 100 events with 1 fb-1 T. Plehn, PROSPINO UCSD, 03/14/06 B. Heinemann

Higgs in the MSSM Minimal Supersymmetric Standard Model: 2 Higgs-Fields: Parameter tanb=<Hu>/<Hd> 5 Higgs bosons: h, H, A, H± Neutral Higgs Boson: Pseudoscalar A Scalar H, h Lightest Higgs (h) very similar to SM At high tanß: A is degenerate in mass with either h or H Decay into either tt or bb for mA<300 GeV: BR(A tt) ≈ 10%, BR(A bb) ≈ 90% Cross section enhanced with tan2 C. Balazs, J.L.Diaz-Cruz, H.J.He, T.Tait and C.P. Yuan, PRD 59, 055016 (1999) M.Carena, S.Mrenna and C.Wagner, PRD 60, 075010 (1999) M.Carena, S.Mrenna and C.Wagner, PRD 62, 055008 (2000) UCSD, 03/14/06 B. Heinemann

Neutral MSSM Higgs Production mechanisms: Experimentally: bb  A/h/H gg  A/h/H Experimentally: pp  b+X  bbb+X pp  +X  tt +X UCSD, 03/14/06 B. Heinemann

MSSM Higgs: Tau-Selection Select t t Events: One t decays to e or m One t decays to hadrons Require: e or m with pT>10 GeV Hadronic t: Narrow Jet with low multiplicity 1 or 3 tracks in 10o cone No tracks between 10o and 30o: Cone size descreasing with increasing energy Low p0 multiplicity Mass<1.8 GeV Kinematic cuts against background: W+jets Photon+jets Dijets UCSD, 03/14/06 B. Heinemann

Acceptance and Background Main background: Drell-Yan tt Indistinguishable signature => Separate kinematically No full mass reconstruction possible for low Higgs pT: Form mass like quantity: mvis=m(t,e/m,ET) Good separation between signal and background Data mass distribution agrees with SM expectation: mvis>120 GeV: 8.4±0.9 expected, 11 observed UCSD, 03/14/06 B. Heinemann

MSSM Higgs: Results CDF pp  A+X tt+X Brandnew result from DØ Sensitivity at high tanb Exploting regime beyond LEP Brandnew result from DØ Combined with other mode pp  bA+Xbbb+X Future (L=8 fb-1): Probe values down to 25-30! UCSD, 03/14/06 B. Heinemann

Generic Squarks and Gluinos Squark and Gluino production: jets and Golden signature at LHC Et Missing Transverse Energy Jets Phys.Rev.D59:074024,1999 103 1 s (pb) 10-3 10-6 10-9 300 500 700 Strong interaction => large production cross section for M(g) ≈ 300 GeV/c2: 1000 event produced for M(g) ≈ 500 GeV/c2: 1 event produced ~ ~ UCSD, 03/14/06 B. Heinemann

Generic Squarks and Gluinos Et Et ~ Generic Squarks and Gluinos Selection: 3 jets with ET>125 GeV, 75 GeV and 25 GeV Missing ET>165 GeV HT=∑ jet ET > 350 GeV Missing ET not along a jet direction: Avoid jet mismeasurements Background: W/Z+jets with Wl or Z Top QCD multijets Mismeasured jet energies lead to missing ET Observe: 3, Expect: 4.1±1.5 QCD UCSD, 03/14/06 B. Heinemann

Squark/Gluino Candidate event 4 Jets and large missing ET UCSD, 03/14/06 B. Heinemann

Impact on SUSY No evidence for excess of events: Exclude squarks and gluinos for certain mass values D0 excluded gluinos up to 230 GeV CDF: Interpretation still ongoing Likely similar to D0 Stop and sbottom quarks are excluded from CDF analysis 3rd generation is special… UCSD, 03/14/06 B. Heinemann

3rd generation Squarks ~ ~ 3rd generation is special: Masses of one can be very low due to large SM mass Particularly at high tan Direct production or from gluino decays: pp bb or tt pp gg bbbb or tttt Decay of sbottom and stop: b b0 Stop depends on mass: Heavy: t t0 Medium: t b± bW0 Light: t c0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ UCSD, 03/14/06 B. Heinemann

Bottom Squarks This analysis: Spectacular signature: ~ ~ Gluino rather light: 200-300 GeV BR(g->bb)=100% assumed Spectacular signature: 4 b-quarks + ET Require b-jets and ET>80 GeV ~ ~ Expect:2.6±0.7 Observe: 4 Exclude new parameter space in gluino vs. sbottom mass plane UCSD, 03/14/06 B. Heinemann

Light Stop-Quark: Motivation If stop quark is light: decay only via t->cc10 E.g. consistent with relic density from WMAP data Balazs, Carena, Wagner: hep-ph/0403224 WCDM=0.11+-0.02 m(t)-m(c10)≈15-30 GeV/c2 m(t)<165 GeV/c2 Search for 2 charm-jets and large Et: ET(jet)>35, 25 GeV ET>55 GeV ~ ~ ~ ~ ~ UCSD, 03/14/06 B. Heinemann

Light Stop-Quark: Result Charm jets: Use “jet probability” to tag charm: Probability of tracks originating from primary vertex Improves signal to background ratio: Signal Efficiency: 30% Background rejection: 92% Data consistent with background estimate Observed: 11 Expected: 8.3+2.3-1.7 Main background: Z+ jj -> vvjj W+jj -> tvjj UCSD, 03/14/06 B. Heinemann

Stop Quark: Result and Future Due to slight excess in data: No limit set on stop quark mass yet Future light stop reach : L=1 fb-1: m(t)<160 GeV/c2 L=4 fb-1: m(t)<180 GeV/c2 LHC: Direct production will be tough to trigger But gluino decay to stop and top yields striking signature! Two W’s, two b-quarks, two c-quarks and missing ET If m(g)>m(t)+m(t) ~ ~ ~ ~ UCSD, 03/14/06 B. Heinemann ~ ~ ~ ~ ~ ~ ~ ~

Charginos and Neutralinos Charginos and Neutralionos: SUSY partners of W, Z, photon, Higgs Mixed states of those Signature: 3 leptons + Recent analyses of EWK precision data: J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein: hep-ph/0411216 Light SUSY preferred ~ Et UCSD, 03/14/06 B. Heinemann Et Et

3 leptons + Et Many analyses to cover full phase space: Low tan: 2e+e/m 2m+e/m me+e/m High tan: 2e+isolated track Sensitive to one-prong tau-decay Other requirements: Dilepton mass >15 GeV and not within Z mass range Less than 2 jets Significant ET UCSD, 03/14/06 B. Heinemann

Trileptons: Blind Analyses Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 UCSD, 03/14/06 B. Heinemann

Trileptons: Result Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 UCSD, 03/14/06 B. Heinemann

Trileptons: Result Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 UCSD, 03/14/06 B. Heinemann

Trileptons: Result Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 UCSD, 03/14/06 B. Heinemann

Trileptons: Result Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 UCSD, 03/14/06 B. Heinemann

Trileptons: Result Still no SUSY! Will need to set limit Analysis Expected background Example SUSY Data Trilepton (+l) 0.640.18 1.60.2 1 Trilepton (e+l) 0.780.13 1.00.2 Trilepton (ee+l) 0.170.05 0.50.1 Dielectron+track 0.490.14 1.20.1 Trilepton(+l) 0.130.03 0.12+-0.02 Still no SUSY! Will need to set limit UCSD, 03/14/06 B. Heinemann

3-muon Event CMIO MET CMUP CMX UCSD, 03/14/06 B. Heinemann

Rare Decay: Bsm+m- SM rate heavily suppressed: SUSY rate may be enhanced: Related to Dark Matter cross section (in one of 3 cosmologically interesting regions) Recently gained a lot of attention in WMAP data SUSY analyses, see e.g. B. Allanach, C. Lester: hep/ph-0507383 J. Ellis et al., hep-ph/0504196 S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033 R. Dermisek et al., hep-ph/0507233 (Buchalla & Buras, Misiak & Urban) (Babu, Kolda: hep-ph/9909476+ many more) S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033 UCSD, 03/14/06 B. Heinemann

Bsm+m- vs. Trileptons 1x10-7 Trileptons: 2fb-1 A.Dedes, S. Mrenna, U. Nierste, P. Richardson hep-ph/0507233 1x10-7 Trileptons: 2fb-1 UCSD, 03/14/06 B. Heinemann

Indirect Search: Bs->mm Preselection: Two muons with pT>1.5 GeV/c Dimuon vertex displaced from primary Identify variables that separate signal from background: Decay length:  Points towards primary vertex Isolated from other tracks Construct likelihood of variables: Excellent separation Cut at likelihood ratio >0.99 UCSD, 03/14/06 B. Heinemann

Bs->mm :Result and Future 0 events observed Backgrounds: 0.81± 0.12 for (CMU-CMU) 0.66 ± 0.13 for (CMU-CMX) Branching Ratio: CDF: BR(Bs->mm)<1.5 x 10-7 at 90%C.L. Combined with D0: BR(Bs->mm)<1.2 x 10-7 at 90%C.L. Future: Probe values of 2x10-8 UCSD, 03/14/06 B. Heinemann

Impact of Bsm+m- limits: Now A.Dedes, S. Mrenna, U. Nierste, P. Richardson hep-ph/0507233 S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033 Starting to constrain MSSM parameter space UCSD, 03/14/06 B. Heinemann

Impact of Bsm+m- limits: L=8 fb-1 A.Dedes, S. Mrenna, U. Nierste, P. Richardson hep-ph/0507233 S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033 Tevatron will severely constrain parameter space UCSD, 03/14/06 B. Heinemann

Impact of Bsm+m- limits: LHC A.Dedes, S. Mrenna, U. Nierste, P. Richardson hep-ph/0507233 S. Baek, Y.G.Kim, P. Ko, hep-ph/0406033 LHC will probe SM value with about 100 fb-1 UCSD, 03/14/06 B. Heinemann

Signature Driven Searches All SUSY searches cover unique signatures, e.g. I showed direct searches: Three lepton and missing ET 3 jets and missing ET 2 b--jets or c-jets and missing ET However, can also search really model independent to make sure we don’t miss anything! Examples: Dilepton or diphoton invariant mass Diphoton+X UCSD, 03/14/06 B. Heinemann

High Mass Dileptons and Diphotons Standard Model high mass production: New physics at high mass: Resonance signature: Spin-1: Z’, W’ Spin-2: Randall-Sundrum (RS) Graviton Spin-0: Higgs, Sneutrino Tail Enhancement: Contact Interactions Large Extra Dimension (Arkhani-Hamed, Dimopoulos, Dvali) UCSD, 03/14/06 B. Heinemann

Dielectron and Diphoton Mass Spectra Dielectron mass spectrum and diphoton mass distributions Data agree well with Standard Model spectrum No evidence for mass peak deviation in tail ee  UCSD, 03/14/06 B. Heinemann

Limits on New Physics Mass peak search examples: Tail enhancement: contact interaction Model ZSM Z Z Z Mass limit (GeV/c2) 860 735 725 745 Probing New Physics - Directly up to 0.9 TeV - Indirectly up to 5-8 TeV UCSD, 03/14/06 B. Heinemann

Signature: Diphoton+X Search for any objects produced in association with 2 photons Electron, muon, tau Photon Jet Missing ET Data consistent with background prediction =e,m,g SM Data +e 4.50.8 2  0.50.1  1.90.6 4 ET 0.30.1 UCSD, 03/14/06 B. Heinemann

Diphoton+X: Invariant Mass Kinematic distributions also agree well with background prediction Triphoton analysis first physics result with >1 fb-1 of data! UCSD, 03/14/06 B. Heinemann

Dirac Magnetic Monopole Bends in the wrong plane ( high pt) Large ionization in scint (>500 Mips!) Large dE/dx in drift chamber TOF trigger designed specifically for monopole search mmonopole > 350 GeV/c2 UCSD, 03/14/06 B. Heinemann

Summary and Outlook CDF and Tevatron running great! more than 1 fb-1! Often world’s best constraints Many unique searches of SUSY, Higgs and new signatures Most analyses based on up to 350 pb-1 Will analyse 1 fb-1 by summer 2006 Anticipate 4.4-8.6 fb-1 by 2009 If Tevatron finds no new physics it will provide further important constraints And hopefully LHC will then do the job more than 1 fb-1! UCSD, 03/14/06 B. Heinemann

GMSB: gg+Et ~ ~ ~ ~ D0+CDF: m(c+1)> 209 GeV/c2 Assume c01 is NLSP: Decay to G+g G light: m ≈ 1 keV Inspired by CDF eegg+Et event in Run I SM exp.: 10-6 D0 (CDF) Inclusive search: 2 photons: Et > 20 (13) GeV Et > 40 (45) GeV ~ ~ ~ Exp. Obs. m(c+1) D0 2.5±0.5 1 >192 GeV CDF 0.3±0.1 >168 GeV D0+CDF: m(c+1)> 209 GeV/c2 UCSD, 03/14/06 B. Heinemann

Tevatron: Future UCSD, 03/14/06 B. Heinemann

Backup Slides

SUSY Particles gravitino UCSD, 03/14/06 B. Heinemann

Z´ee Signal Examples Angular distribution has different sensitivity for different Z’ models UCSD, 03/14/06 B. Heinemann

Extra Dimensions Attempt to solve hierarchy problem by introducing extra dimensions at TeV scale ADD-model: n ED’s large: 100mm-1fm M2PL ~ Rn MSn+2 (n=2-7) Kaluza-Klein-tower of Gravitons continuum Interfere with SM diagrams: l=±1 (Hewett) Randall Sundrum: Gravity propagates in single curved ED ED small 1/MPl=10-35 m Large spacing between KK-excitations  resolve resonances Signatures at Tevatron: Virtual exchange: 2 leptons, photons, W’s, Z’s, etc. BR(G->gg)=2xBR(G->ll) KK ee, mm, gg q _ q UCSD, 03/14/06 B. Heinemann

Randall-Sundrum Graviton Analysis: 2 photon mass spectrum Backgrounds: direct diphoton production Jets: 0 Data consistent with background Relevant parameters: Coupling: k/MPl Mass of 1st KK-mode UCSD, 03/14/06 B. Heinemann

Neutral Spin-1 Bosons: Z’ 2 high-PT electrons, muons, taus Data agree with BG (Drell-Yan) Interpret in Z’ models: E6-models: y, h, c, I SM-like couplings (toy model) UCSD, 03/14/06 B. Heinemann

Future High Energy Colliders LHC (2007-?) ILC (>2020?) p e+ p e- √s=14 TeV √s=0.5-1 TeV UCSD, 03/14/06 B. Heinemann