Light Gradients in Spherical Photosynthetic Vesicles

Slides:



Advertisements
Similar presentations
Volume 101, Issue 8, Pages (October 2011)
Advertisements

Kelly Gallagher, Kim Sharp  Biophysical Journal 
Seminar on Microwave and Optical Communication
Volume 94, Issue 12, Pages (June 2008)
A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
Maria A. Kiskowski, Anne K. Kenworthy  Biophysical Journal 
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Coarse-Grained Model of SNARE-Mediated Docking
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle  Naoto Yagi, Hiroyuki Iwamoto, Katsuaki Inoue 
Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
Alessandro Laio, Vincent Torre  Biophysical Journal 
Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization Microscopy  Joseph N. Forkey, Margot E. Quinlan,
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 102, Issue 6, Pages (March 2012)
Evanescent Excitation and Emission in Fluorescence Microscopy
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Volume 99, Issue 11, Pages (December 2010)
Volume 80, Issue 3, Pages (March 2001)
Michael J. Knight, Serena Dillon, Lina Jarutyte, Risto A. Kauppinen 
Volume 98, Issue 11, Pages (June 2010)
Volume 86, Issue 5, Pages (May 2004)
Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture  Manuel J. Mendes, Sirazul Haque, Olalla Sanchez-Sobrado, Andreia.
Orientation of the Infrared Transition Moments for an α-Helix
Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane
Jeremy D. Wilson, Chad E. Bigelow, David J. Calkins, Thomas H. Foster 
Electrochemical and PM-IRRAS Studies of the Effect of Cholesterol on the Structure of a DMPC Bilayer Supported at an Au (111) Electrode Surface, Part.
Volume 109, Issue 2, Pages (July 2015)
Volume 109, Issue 10, Pages (November 2015)
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Volume 101, Issue 2, Pages (July 2011)
Vassili Ivanov, Min Li, Kiyoshi Mizuuchi  Biophysical Journal 
Julia Adolphs, Thomas Renger  Biophysical Journal 
Ruitian Zhang, Rosangela Itri, Martin Caffrey  Biophysical Journal 
Ben Corry, Serdar Kuyucak, Shin-Ho Chung  Biophysical Journal 
A Programmable Optical Angle Clamp for Rotary Molecular Motors
L. Makowski, J. Bardhan, D. Gore, D.J. Rodi, R.F. Fischetti 
Volume 83, Issue 2, Pages (August 2002)
Modulating Vesicle Adhesion by Electric Fields
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Site-Specific Dichroism Analysis Utilizing Transmission FTIR
Volume 103, Issue 5, Pages (September 2012)
Calculating the Free Energy of Association of Transmembrane Helices
Volume 95, Issue 9, Pages (November 2008)
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
The Standard Deviation in Fluorescence Correlation Spectroscopy
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Volume 96, Issue 12, Pages (June 2009)
Tests of Continuum Theories as Models of Ion Channels. I
Intracellular Encoding of Spatiotemporal Guidance Cues in a Self-Organizing Signaling System for Chemotaxis in Dictyostelium Cells  Tatsuo Shibata, Masatoshi.
Volume 101, Issue 8, Pages (October 2011)
Volume 111, Issue 1, Pages (July 2016)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Volume 83, Issue 5, Pages (November 2002)
Ilia A. Solov’yov, Walter Greiner  Biophysical Journal 
Fundamentals of Applied Electromagnetics
The Use of pHluorins for Optical Measurements of Presynaptic Activity
Volker Kiessling, Marta K. Domanska, Lukas K. Tamm  Biophysical Journal 
Volume 102, Issue 6, Pages (March 2012)
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
John E. Pickard, Klaus Ley  Biophysical Journal 
Fretting about FRET: Failure of the Ideal Dipole Approximation
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Ilia A. Solov'yov, Henrik Mouritsen, Klaus Schulten 
Volume 101, Issue 8, Pages (October 2011)
Molecular Structure of Membrane Tethers
Volume 99, Issue 1, Pages (July 2010)
Volume 83, Issue 6, Pages (December 2002)
Fangqiang Zhu, Klaus Schulten  Biophysical Journal 
Presentation transcript:

Light Gradients in Spherical Photosynthetic Vesicles G. Paillotin, W. Leibl, J. Gapiński, J. Breton, A. Dobek  Biophysical Journal  Volume 75, Issue 1, Pages 124-133 (July 1998) DOI: 10.1016/S0006-3495(98)77500-9 Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 1 (a) A schematic view of a spherical membrane whose center is at the origin of the Cartesian coordinates x, y, z (with unit vectors i, j, k) and the polar coordinates r, ϕ, θ (with unit vectors n, v, w). Light of intensity I0 with its electric field vector E0 polarized in the x direction enters the system in the z direction. (b) Cross section of a single thin membrane separating two media of the same value of dielectric constant ϵw. L=R1−R2 is the thickness of the membrane characterized by a complex dielectric constant ϵ=ϵn(n:n)+ϵt(1−n:n), and r=R1+L/2 is the radius for which the calculations are performed. The dipoles m are created in each reaction center perpendicular to the membrane. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 2 Values of the total I, normal In, and tangential It, components of light intensity calculated for ϕ=45°, λ=680nm, and two different sphere radii: r=25 nm (——) and r=250 nm (–––), as a function of the θ angle. All intensity values were normalized to I0θ=ʃ02πI(θ)dθ. The polarized light in the x direction enters the sphere at ϕ=180°. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 3 Values of the total light intensity I=In+It, calculated for θ=45°, λ=680nm, and two different sphere radii: r=25 nm (——) and r=250 nm (–––), as a function of the ϕ angle. Light polarized in the x direction enters the sphere at ϕ=180° (from the right). All intensity values were normalized to I0ϕ=ʃ0πI(ϕ)sin ϕ dϕ. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 4 Light intensity distribution on the surface of a pigmented sphere, shown in arbitrary units as a 3D polar plot calculated from Eq. 15. To make the angular dependence more visible, only the deviation from the minimum value is presented, ΔI=I−Imin. Calculations were performed for the sphere radii r=25 nm and r=250 nm. Incident nonpolarized light of wavelength λ=440nm, λ=530nm, and λ=680nm (a, b, c, respectively) enters the system along the z axis (from the bottom). Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 5 The difference, ΔIl,u=Il−Iu, between the intensity Il integrated over 90≤ϕ≤180 and Iu, the intensity integrated over 0≤ϕ≤90, calculated for fixed θ=45°, λ=440nm (–––), λ=530nm (· · · · ·), and λ=680nm (——), as a function of radius r. Light polarized in the x direction enters the sphere at ϕ=180°. All intensity values were normalized to I0ϕ=Il+Iu. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 6 Contour plot of Pz(λ, r), the fraction of light absorbed in the whole sphere, contributing to the z component of the sphere dipole moment, plotted as a function of wavelength λ and radius r. Positive values indicate an inverse light gradient, negative values a normal light gradient. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 7 Wavelength dependence of the light-gradient photovoltage, V¯ph=Vph · ϵ/Z · OD, elicited from (a) spherical EDTA vesicle suspensions, (b) spherical osmotically swollen thylakoid (bleb) suspensions. Normalization is to the optical density OD, to estimated ϵ of the sample, and to Z=N · σ(λ) · I0, the number of absorbed photons per single reaction center, where N=300 is the average antenna size in green plants (Simpson and Knoetzel, 1996), and σ(λ) is the mean absorption cross section of one chlorophyll molecule at a given wavelength. I0 is the incoming light intensity. The solid line represents the best fit calculated according to Eq. 19, with nn=1.60 and r=110 and r=900, respectively. The other parameters used for the calculation were nt=1.42, nw=1.333, ϵ=40.8, meff=5.9×10−28C · m, L=5.1 nm, [Chl]=0.45M. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 8 Normal (–––) and tangential (——) components of real and imaginary parts of dielectric constants and refractive indices of photosynthetic membranes, calculated as described in the text. Biophysical Journal 1998 75, 124-133DOI: (10.1016/S0006-3495(98)77500-9) Copyright © 1998 The Biophysical Society Terms and Conditions