Search Sources of Ultrahigh Energy Particles in our Galaxy. V. A

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

A.A. Ivanov for the Yakutsk array group The scientific goals of the Yakutsk array under modernization.
Application for Pierre Auger Observatory.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
EAS EXPERIMENT ON BOARD OF THE AIRBUS A380 J. N. Capdevielle, F. Cohen, PCC, College de France K. Jedrzejczak, B. Szabelska, J. Szabelski, T. Wibig The.
Recent Results for Small-Scale Anisotropy with HiRes Stereo Data Chad Finley Columbia University HiRes Collaboration Rencontres de Moriond 17 March 2005.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Aspen, April 19, 2007Tom Gaisser eV decade Breakout summary.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The Telescope Array Low Energy Extension (TALE)‏ Pierre Sokolsky University of Utah.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Probing Extreme Universe through Ultra-High Energy Cosmic Ray Yamamoto Tokonatsu Konan University, Japan Introduction UHECR observation Recent results.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Ultra-High Energy Cosmic Ray Research with the Pierre Auger Observatory Methods, Results, What We Learn, and expansion to Colorado Bill Robinson.
Design and status of the Pierre Auger Observatory J. C. Arteaga Velázquez 1, Rebeca López 2, R. Pelayo 1 and Arnulfo Zepeda 1 1 Departamento de Física,
The 23-European Symposium and the 32 Russian cosmic ray conference 3-7 July Moscow 1 Possible composition of the primary particles at ultrahigh energies.
Neutron bursts associated with lightning cloud-to-ground discharges V.I. Kozlov, V.A. Mullayarov, S.A. Starodubtsev, A.A. Toropov Yu.G. Shafer Institute.
The cosmic ray luminosity of the nearby active galactic nuclei L.G. Dedenko 1, D.A. Podgrudkov 1, T.M. Roganova 2, G.F. Fedorova 2 1 Faculty of physics,
Yakutsk results: spectrum and anisotropy M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Status and first results of the KASCADE-Grande experiment
Properties of giant air showers and the problem of energy estimation of initial particles M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute.
AGASA Results Masahiro Teshima for AGASA collaboration
SN 1987A as a Possible Source of Cosmic Rays with E 0 < eV by Yakutsk EAS Array Data A.V. Glushkov, L.T. Ksenofontov, M.I. Pravdin Yu.G. Shafer Institute.
Ultra High Energy Cosmic Rays : 40 years Retrospective of Continuous Observations at the Yakutsk Array. Part 1: Cosmic Rays Spectrum in the Energy Range.
Dr. Karsten Berger Instituto de Astrofisica de Canarias, La Laguna, Spain.
Solving the Mystery of the Highest Energy Cosmic Rays : 1938 to 2007 cosmic rays: James W. Cronin Inaugural Conference: Institute for Gravitation and the.
52° Congresso SAIt 2008 Raffaella Bonino* for the Pierre Auger Collaboration ( * ) IFSI – INFN – Università di Torino.
Propagation and Composition of Ultra High Energy Cosmic Rays
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of SB RAS Transparency of a magnetic cloud boundary for cosmic rays I.S. Petukhov, S.I. Petukhov.
The primary energy spectrum measured by using the time structure of extensive air showers with compact EAS arrays (ID441) H. Matsumoto 1, A. Iyono 1, I.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
Workshop on AstroParticle Physics, WAPP 2009 Bose Institute, Darjeeling, December 2009 Extensive Air Showers and Astroparticle Physics Observations and.
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
Feb. 21st, 2011YongPyong20121 B AYESIAN S TUDY OF UHECR S Wooram Cho Institute of Physics and Applied Physics Yonsei University, Seoul, Korea
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
Space-time structure of signals in scintillation detectors of EAS L.G. Dedenko, G.F. Fedorova, T.M. Roganova and D.A. Podgrudkov.
Arnaud Bellétoile SUBATECH NANTES Manchester, 19/07/07 CODALEMA Collaboration Radio-detection of UHECR with the CODALEMA experiment for the CODALEMA collaboration.
The propagation of Ultra High Energy Cosmic Rays in the Galactic magnetic fields A. Elyiv B. Hnatyk Astronomical Observatory of Kyiv National University,
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
Scaling behavior of lateral distribution of electrons in EAS
The “Carpet-2” multipurpose air shower array of the Baksan Neutrino Observatory INR of RAS A.U. Kudzhaev Institute for Nuclear Research, Russian Academy.
2-8 July 2017 KBR, Terskol (BNO); KChR, Nizhnij Arkhyz (SAO)
Long-term variations of vector and tensor anisotropies of cosmic rays
Andrea Chiavassa Universita` degli Studi di Torino
A.S. Lidvansky, M.N. Khaerdinov, N.S. Khaerdinov
32nd International Cosmic Ray Conference, 2011
Signatures of Protons in UHECR Transition from Galactic to
Cosmic Rays at Extreme Energies The Pierre Auger Observatory
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
A new 1 km2 EAS Cherenkov Array in the Tunka Valley
science with 40 IceCube strings
Latest Results from the KASCADE-Grande experiment
Telescope Array Experiment Status and Prospects
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
After S Swordy (Chicago) Trans-GZK event detected at Haverah Park.
Composition of Cosmic Rays at Ultra High Energies
Wei Wang National Astronomical Observatories, Beijing
The Aperture and Precision of the Auger Observatory
Examine solar cycle variations (11/22 yrs.) of DA in SO & SI times.
Studies and results at Pierre Auger Observatory
Presentation transcript:

Search Sources of Ultrahigh Energy Particles in our Galaxy. V. A Search Sources of Ultrahigh Energy Particles in our Galaxy V.A. Kolosov, A.A. Mikhailov Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677980 Yakutsk, Russia,

Yakutsk array from 1974 continue to operate, now S~10 km2   Yakutsk array from 1974 continue to operate, now S~10 km2 20 Y, KM. 2,5   X, KM. C геог. 36.4170 Ю 22 51 23 48 57 47 52 19 11 39 46 10 4 1 56 44 37 9 15 58 21 42 53 24 49 50 12 40 6 14 2 59 55 25 13 3 38 45 7 43 8 54 41 5 84 85 83 87 82 81 89 88 86 18 17 16 – мастерная станция с черенковским детектором. – мастерная станция. – станция сгущения, входящая в малую черенковскую установку. – мюонный детектор, S = 20 м2. – мюонный детектор, S = 36 м2. – большой мюонный детектор, S = 186 м2. 1 км БМД 36

We consider EAS with usual and deficit muons at E>5 We consider EAS with usual and deficit muons at E>5.1018 eV by Yakutsk data, accuracy angles - 5-7, threshold of muon detectors register E>1/cos GeV. We consider EAS with E>4.1019 eV by P. Auger, HiRes, AGASA data also.

Observed (circles) and expected (curves) density (r) electron-photon and moon components in depends from distances of axis EAS, E>1 GeV.

21 EAS without  - , 5 EAS with poor  - o

Distribution particles in RA: a) 5. 1018 – 1019 eV, b) 1019 – 4 Distribution particles in RA: a) 5.1018 – 1019 eV, b) 1019 – 4.1019 eV, c) >4.1019 eV

Amplitudes A1 and phase’s RA1 of the 1-st harmonic are shown: at E~1019 eV - A1=15.24.8%, RA=0. Probability - P~0.006. N=898.

Observed (circles) and expected (dotted curve) number of particles < from pulsars: a) – all sphere, b) halo,c) anticenter, d) from side of Local Arm Orion, <45, at <6 - P~2.10-4 (ECRC, 1998).  

EAS without   and pulsars  (R. Manchester et al EAS without   and pulsars  (R. Manchester et al.,2006), R<6, ~ 80% EAS correlate with pulsars

Yakutsk, E>4.1019 eV, EAS <45o from side Orion arm (R<6, ▲ ~ 85% EAS - arm, outside - 43% correlate )

Ratio number of pulsars with period P - n(P0<P)/n(P>P0) at R<6o: 1 – P. Auger; 2- AGASA; 3 – HiReS; 4 - Yakutsk (=0); 5 - Yakutsk (usual ); P – pulsars. M. Giler, P. Blasi, A.Olinto – E~1/P2

Portion pulsars with periods P0 <0. 01 sec Portion pulsars with periods P0 <0.01 sec. N=n(<P0)/( n(P)- n(<P0)), : 1 –PAO, 2 – HiRes, 3 – AGASA, 4 – Yak.1(usual), 5 - Yak.2.(=0). Dash line – catalogue of pulsars

Distribution correlated pulsars: 1 – PAO, 2 – HiRes, 3 – AGASA, 4 – “Yak. 1 (=0), 5 – “Yak. 2 (usual ).

Distribution pulsars by distances (catalogue)

Distribution pulsars by distances, PAO

Yakutsk, E>4. 1019 eV, 34 EAS: 1974-1985, 4 EAS- P~0 Yakutsk, E>4.1019 eV, 34 EAS: 1974-1985, 4 EAS- P~0.1, 1986-2007, 5 EAS-P~0.03 (ICRC, 2007, Mexico).

AGASA, E>4. 1019 eV- 58 EAS: 1984-1994, 13 EAS– P~ 0 AGASA, E>4.1019 eV- 58 EAS: 1984-1994, 13 EAS– P~ 0.001, 1995-2001, 12 EAS – P~0.001 (ICRC, 2007, Mexico).

P. AUGER, E>5. 7×1019 eV - 27 EAS: 2004-2005, 3 EAS– P~ 0 P.AUGER, E>5.7×1019 eV - 27 EAS: 2004-2005, 3 EAS– P~ 0.001, 2006-2007, 4 EAS – P~0.006 (ICRC, 2007, Mexico).

P.Auger:  - EAS, which correlate and uncorrelated with pulsars, ,  EAS which correlated pulsars with periods: 0.01<P<0.1 - n=2; 0.001<P<0.01 - n=12;. Max: P(12,69)<10-4 . PSR 1332-3032, 1308-4650, 1355-5153, 1405-5641, 1308-5844, 1314-6101

Table 1. Correlation EAS with pulsars from side Orion arm Table 1. Correlation EAS with pulsars from side Orion arm. Number of EAS N1 and number of particles N2 inside <45 Orion arm, P - probability Array, E, eV , deg. N1 N2 P P. Auger, >4.1019 3 69 6 4.10-2 Yakutsk, (0.8-4)1019 898 265 10-3 140 3.10-2

Distribution pulsars which have 10 particles (Yakutsk, E~1019 eV) with E=(0.8-4)1019 eV at radius <6 (circles), P<10-4 .

  Conclusion It is found some correlation arrival directions EAS with pulsars short periods by world data, maximum EAS from side a galactic plane by Yakutsk and Auger data. Most likely, cosmic rays are galactic. No extragalactic cosmic rays.