Hunting for Cosmological Neutrino Background (CvB)

Slides:



Advertisements
Similar presentations
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Advertisements

G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Tau Neutrino Physics Introduction Barry Barish 18 September 2000.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Histoire de l’univers infinite, finite, infinite,.
Can the CNB be detected by a torsion balance? B. Heckel, Univ. of Washington.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Particle Physics and Cosmology cosmological neutrino abundance.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Constraining DM scenarios with CMB Fabio Iocco Institut d’Astrophysique de Paris Institut de Physique Theorique, CEA/Saclay In collaboration with: G. Bertone,
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
G. Mangano INFN Napoli NOW We know a lot about neutrino properties from lab experiments. We would like to know more exploiting their impact on cosmological.
SUPERNOVA NEUTRINOS AT ICARUS
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Zero Threshold Reactions for Detecting Cosmic Relic Neutrinos R. S. Raghavan Virginia Tech XII Neutrino Telescopes Venice March
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
The Cosmological Energy Density of Neutrinos from Oscillation Measurements Kev Abazajian Fermilab June 10, 2003 NuFact 03 – Fifth International Workshop.
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Cosmology, Cosmology I & II Fall Cosmology, Cosmology I & II  Cosmology I:  Cosmology II: 
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
New Nuclear and Weak Physics in Big Bang Nucleosynthesis Christel Smith Arizona State University Arizona State University Erice, Italy September 17, 2010.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
1 Interaction Between Ionizing Radiation And Matter, Part 3 Neutrons Audun Sanderud Department of Physics University of Oslo.
A Lightning Review of Dark Matter R.L. Cooper
The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
NEUTRINO DECOUPLE as Hot DM Neutrinos are kept in thermal equilibrium by the creating electron pairs and scattering (weak interaction): This interaction.
March 7, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
1 Lecture-03 The Thermal History of the universe Ping He ITP.CAS.CN
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Neutrino Cosmology STEEN HANNESTAD NBI, AUGUST 2016 e    
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
The Dark Universe Susan Cartwright.
Physical Cosmology I 6th Egyptian School for HEP
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Interacting relic neutrinos and free streaming
Dark Matter in the Universe physics beyond the standard model
Sterile Neutrinos and WDM
The Physics of Neutrinos
Topics in Higgs Portal Dark Matter
Amand Faessler, Erice September 2014
Precision cosmology and neutrinos
SOLAR ATMOSPHERE NEUTRINOS
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl.
Annihilation (with symmetry breaking) quark soup
Neutrinos as probes of ultra-high energy astrophysical phenomena
Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart.
Neutrino astrophysics
Seoul National University
APP Introduction to Astro-Particle Physics
Neutrino Mass Bounds from Onbb Decays and Large Scale Structures
NEUTRINOS AND BBN ( & THE CMB) Gary Steigman
University of Novi Sad Department of Physics
Dark Matter Detection,Models and Constraints
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Hunting for Cosmological Neutrino Background (CvB) NO-VE 2008 Hunting for Cosmological Neutrino Background (CvB) Gianpiero Mangano INFN, Sezione di Napoli, Italy G. Mangano NO-VE 2008

CvB standard features Number density today Energy density today Neutrinos decoupled at T~MeV, keeping a “thermal” spectrum Number density today Energy density today massless massive G. Mangano NO-VE 2008 G. Mangano NO-VE 2008

CvB details At T~me, e+e- pairs annihilate heating photons … and neutrinos. Non thermal features in v distribution (small effect). Oscillations slightly modify the result f=fFD(p,T)[1+δf(p)] G. Mangano NO-VE 2008 G. Mangano NO-VE 2008

e , δf x10 10-2 effect G. Mangano NO-VE 2008

CvB details More radiation Fermi-Dirac spectrum with temperature T and chemical potential =vTv Raffelt More radiation G. Mangano NO-VE 2008

PLANCK /Tv very small (bad for detection!) BBN, CMB (LSS) + oscillations Cuoco et al 04 PLANCK /Tv /Tv Hamann, Lesgourgues and GM et al 08 G. Mangano NO-VE 2008

CvB for optimists V produced by decays at some cosmological epoch Early on: (TBBN> T>TCMB) Thermal FD spectrum Distortion from Φ decay Cuoco et al ‘05 Late (T<< TCMB): Unstable DM (e.g. Majoron) Lattanzi and Valle ’07 Lattanzi et al (in progress) G. Mangano NO-VE 2008

Cosmic Microwave Background Formation of Large Scale Structures CvB indirect evidences Primordial Nucleosynthesis BBN Cosmic Microwave Background CMB Formation of Large Scale Structures LSS T ~ MeV T < eV flavor dependent Flavor blind G. Mangano NO-VE 2008

Effect of neutrinos on BBN 1. Neff fixes the expansion rate during BBN D 3He 7Li 4He 2. Direct effect of electron neutrinos and antineutrinos on the n-p reactions G. Mangano NO-VE 2008 G. Mangano NO-VE 2008

Effect of CvB on CMB and LSS Mean effect (Sachs-Wolfe, M-R equality)+ perturbations Melchiorri and Trotta ‘04 G. Mangano NO-VE 2008

CvB locally: a closer look Neutrinos cluster if massive (eV) on large cluster scale Escape velocity: Milky Way 600 Km/s clusters 103 Km/s How to deal with: Boltzmann eq. + Poisson Sing and Ma ’02 Ringwald and Wong ‘04 G. Mangano NO-VE 2008

. Milky Way (1012 MO) . @ Earth Ringwald and Wong ‘04 G. Mangano NO-VE 2008

Detection I: Stodolsky effect Energy split of electron spin states in the v background requires v chemical potential (Dirac) or net helicity (Majorana) Requires breaking of isotropy (Earth velocity) Results depend on D or M, relativistic/non relativistic, clustered/unclustered Duda et al ‘01 G. Mangano NO-VE 2008

Presently Cavendish torsion balances Torque on frozen magnetized macroscopic piece of material of dimension R Presently Cavendish torsion balances The only well established linear effect in GF Coherent interaction of large De Broglie wavelength Energy transfer at order GF2 Cabibbo and Maiani ’82 Langacker et al ‘83 G. Mangano NO-VE 2008

Detection II: GF2 V-Nucleus collision: net momentum transfer due to Earth peculiar motion Coherence enhances Zeldovich and Khlopov ’81 Smith and Lewin ‘83 Backgrounds: solar v + WIMPS G. Mangano NO-VE 2008

Detection III Accelerator: vN scattering hopeless v capture (see later) LHC Cosmic Rays (indirect): resonant v annihilation at mZ Absorption dip (sensitive to high z) Emission: Z burst above GZK (sensitive to GZK volume, (50 Mpc)3) G. Mangano NO-VE 2008 Ringwald ‘05

A ’62 paper by S. Weinberg and v chemical potential G. Mangano NO-VE 2008

Massive neutrinos and neutrino capture on beta decaying nuclei () e (A, Z) (A, Z  1) Neutrino Capture on a Beta Decaying Nucleus e () e (A, Z) (A, Z  1) G. Mangano NO-VE 2008

v’s are NOT degenerate but are massive! Weinberg: if neutrinos are degenerate we could observe structures around the beta decaying nuclei endpoint Q v’s are NOT degenerate but are massive! 2 mv gap in electron spectrum around Q dn/dEe m= 0 m 0 Q Ee-me m Cocco et al ’07 see also Lazauskas et al ’07 Blennow ‘08 2m G. Mangano NO-VE 2008

Neutrino masses Terrestrial bounds Cosmology ve <2 eV (3H decay) Courtesy of A.Marrone Terrestrial bounds ve <2 eV (3H decay) v <0.19 MeV (pion decays) v <18.2 MeV ( decays) Cosmology Bounds on i mi G. Mangano NO-VE 2008 G. Fogli et al. 2007

Rates Slow (neutral) particle capture Nuclear form factors (shape factors) uncertainties: use beta observables G. Mangano NO-VE 2008

Background    signal/background >1 It works for <mv m Te dn/dTe Observing the last energy bins of width  m Te 2m signal/background >1 It works for <mv G. Mangano NO-VE 2008

3H Beta decaying nuclei having BR() > 5  selected from 14543 decays listed in the ENSDF database G. Mangano NO-VE 2008

The 3H example 8 events yr-1 per 100g of 3H (no clustering) up to 102 events yr-1 per 100 g of 3H due to clustering effect signal/background = 3 for =0.2 eV if mv=0.7 eV =0.1 eV if mv=0.3 eV G. Mangano NO-VE 2008

Variation on the theme: Beta-beams Electron-capture nuclei (fighting with energy threshold!) Best nucleus candidate? Already there ? (Troisk anomaly) Unlikely large flux!! Waiting for Katrin G. Mangano NO-VE 2008

vAP Collaboration CvB map 20?? Conclusions vAP Collaboration CvB map 20?? G. Mangano NO-VE 2008