IIb型超新星爆発時のダスト形成と その放出過程

Slides:



Advertisements
Similar presentations
Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Advertisements

Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
超新星ダストのサイズ分布 2016/02/12 Contents: - Introduction - Dust formation in supernovae (SNe) - Dust destruction by SN reverse shocks - Observations of dust size.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
Core-collapse supernovae as dust producers: what Spitzer is telling us
NAOJ, Division of theoretical astronomy
Dust Formation and Survival in Supernova Ejecta
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Kavli IPMU, University of Tokyo
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
Gas and Dust Layers from Cassiopeia A’s Explosive Nucleosynthesis
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Gas and Dust Layers from Cassiopeia A’s Explosive Nucleosynthesis
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
(National Astronomical Observatory of Japan)
Presentation transcript:

IIb型超新星爆発時のダスト形成と その放出過程 Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.), K. Maeda (IPMU), H. Umeda (Univ. of Tokyo), K. Nomoto (IPMU/Univ. of Tokyo)

・ SPICA 2017年打ち上げ予定 Observatory型 口径 : 3.5 m 空間分解能 : 0.2” 視野 : 0.6’x0.6’ 観測波長 : 5-200 μm   絶対温度 : 4.5 K 分光 : 5-38 μm, R~30000

1. Introduction

1-1. Background CCSNe are main sources of interstellar dust? - formation of dust in the ejecta of SNe - destruction of dust in the shocked gas of SNRs ・ Observations of dust-forming SNe ➔ few information on composition and size of dust SN 2006jc and SN 2004et ➔ Mdust <10-3 Msun ・ Theoretical studies ➔ Mform = 0.1-1 Msun for SNe II      various dust species with 0.001-1 μm (Todini & Ferrara 2001; Nozawa et al. 2003) ➔ Msurv = 0.01-0.8 Msun for nH,0=0.1-10 cm-3 (Bianchi & Schneider 2007; Nozawa et al. 2007) Kotak et al. (2009) Sakon et al. (2009)

1-2. Aim of our study What size and how much amount of dust are ・ Comparison of models with IR observations of SNRs - erosion by sputtering and collisional heating ➔ properties of dust and density structure in CSM ・ Dust formation and evolution in SN with no envelope - 30-40% of CCSNe explode as SNe Ib/c and SN IIb (Prieto et al. 2009; Smartt et al. 2008; Boissier & Prantzos 2009) What size and how much amount of dust are injected from CCSNe into the ISM? How do formation and destruction processes of dust depend on the type of CCSNe?

1-3. Outline ・ Formation of dust in the ejecta of Type IIb SN ➔ composition, size, and mass of newly formed dust ・ Destruction of dust in the hot gas of the SNR ➔ What fraction of dust grains in the SN ejecta can survive and is injected into the ISM?  ・ Thermal emission from shock-heated dust ➔ comparison with IR observations of Cas A SNR ➔ constraint to gas density in the ambient medium

1-4. Cassiopeia A SNR ○ Cas A SNR - age: ~330 yr (Thorstensen et al. 2001) - distance: d=3.4 kpc (Reed et al. 1995) - shock radius forward shock : ~150” (~2.5 pc) reverse shock : ~100” (~1.7 pc)     dM/dt ~ 2x10-5 (vw/10 km/s) Msun/yr   (Chevalier & Oishi 2003) - oxygen-rich SNR dense O-rich fast-moving knots (O, Ar, S, Si, Fe …) thermal emission from ejecta-dust ➔ Mdust = 0.02-0.054 Msun (Rho et al. 2008) - SN type : Type IIb (Krause et al. 2008)

2. Formation of dust in Type IIb SN

2-1. Dust formation calculation ○ Type IIb SN model (SN1993J-like model)  - Meje = 2.94 Msun     MH-env = 0.08 Msun    Mstar = 18 Msun     - E51 = 1   - M(56Ni) = 0.07 Msun ○ Dust formation calculation   - non-steady nucleation and grain growth theory (Nozawa et al. 2003)   - onion-like composition

2-2. Composition and mass of dust formed condensation time ・ different species of dust can condense in different layers ・ condensation time: 300-700 days Total mass of dust formed : 0.167 Msun in SN IIb 0.1-1 Msun in SN II-P

2-3. Radius of dust formed in the ejecta average radius SN IIb SN II-P (Mstar=20 Msun) Grain radius ➔ > 0.01 μm for SN IIP ➔ < 0.01 μm for SN IIb Dust grains formed in H-deficient SNe are small

3. Evolution of dust in Type IIb SNR

3-1. Calculation of dust evolution in SNRs ○ Model of calculations   (Nozawa et al. 2006, 2007) ・ejecta model - hydrodynamic model for   dust formation calculation ・CSM gas density - nH = 1.0 and 10.0 cm-3 - nH(r) ∝ M / (4πr2 vw) g/cm-3   (M = 2x10-5 Msun/yr) ・treating dust as a test particle - erosion by sputtering - deceleration by gas drag - collsional heating ➔ stochastic heating

3-2. Evolution of dust in Type IIb SNR n=1.0 /cc n=10.0 /cc

3-3. Time evolution of dust mass n=1.0 /cc n=10.0 /cc Mdust ~ 10-4 Msun at 105 yr Mdust = 0 Msun at 105 yr Newly formed dust grains in the ejecta are completely destroyed in the shocked gas within the SNR Core-collapse SNe with low-mass outer envelope cannot be main sources of dust

4. Thermal emission of dust in SNRs

4-1. Thermal emission from dust in the SNR ・ thermal radiation from dust ← temperature of dust ・ equilibrium temperature of dust in SNR is determined by collisional heating with gas and radiative cooling H (a, n, Tg)= Λ(a, Qabs, Td) ➔ thermal emission ・ small-sized dust grains (<0.01 μm) ➔ stochastic heating Now I will demonstrate the time evolution of thermal radiation from dust in SNR, including stochastic heating, by using the model of dust evolution in SNR

4-2. Time evolution of IR thermal emission (1) Data: Hines et al. (2004) red: with SH green: without SH

4-3. Time evolution of IR thermal emission (2) Data: Hines et al. (2004) red: with SH green: without SH

4-4. Time evolution of IR SEDs for Cas A SNR 240 yr 340 yr 440 yr 540 yr Data: Hines et al. (2004) red: with SH green: without SH

4-5. Dependence of IR SED on ambient density ρ x 1.6 ρ x 3.3 Md = 0.005 Msun ρ x 5 ρ x 10 Data: Hines et al. (2004) red: with SH green: without SH

4-6. Contribution from circumstellar dust ・ dust species C and Mg2SiO4 ・ dust size distribution f(a) ∝ a^-3.5 amin = 0.001 μm amax = 0.5 μm ・ MC : Msil = 3 : 7 Mg2SiO4 C red: ejecta dust blue: CSM dust

4-7. Contribution from unshocked dust ρ x 4

Summary 1) The radius of dust formed in the ejecta of Type IIb SN is quite small (<0.01 μm) because of low ejecta density 2) Small dust grains formed in Type IIb SN cannot survive destruction in the shocked gas within the SNR 3) Model of dust destruction and heating in Type IIb SNR to reproduce the observed SED of Cas A is Md,warm = 0.005-0.007 Msun, Md,cool = 0.07-0.09 Msun dM/dt = 6-8x10-5 Msun/yr 4) IR SED reflects the destruction and stochastic heating ➔ properties (size and composition) of dust ➔ density structure of circumstellar medium