Štruktúra látok a štruktúrna analýza

Slides:



Advertisements
Similar presentations
Changes in Matter Chapter 3 sections 1 and 3. Solid Definite Shape and Definite Volume.
Advertisements

Metallic –Electropositive: give up electrons Ionic –Electronegative/Electropositive Colavent –Electronegative: want electrons –Shared electrons along bond.
Anandh Subramaniam & Kantesh Balani
The Muppet’s Guide to: The Structure and Dynamics of Solids 2. Simple Crystal Structures.
How do atoms ARRANGE themselves to form solids? Unit cells
Crystalamorphous 4. STRUCTURE OF AMORPHOUS SOLIDS a) A ; b) A 2 B 3.
©2010 John Wiley & Sons, Inc. M P Groover, Principles of Modern Manufacturing 4/e SI Version THE NATURE OF MATERIALS 1.Atomic Structure and the Elements.
Lecture IX Crystals dr hab. Ewa Popko. The Schrödinger equation The hydrogen atom The potential energy in spherical coordinates (The potential energy.
THE NATURE OF SOLIDS SECTION 10.3 After reading Section 10.3, you should know: properties of solids the difference between single-cubic, body- centered.
Structure of Amorphous Materials
Crystalline Structures Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Intermolecular Forces and Liquids and Solids Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture IV Crystals dr hab. Ewa Popko. Why Solids?  most elements are solid at room temperature  atoms in ~fixed position “simple” case - crystalline.
Chapter 13 States Of Matter.
Solids. Motion & Arrangement Vibrate about center of mass. – Cannot “translate” or move from place to place. – Cannot slide past each other or flow. Packed.
Liquids and Solids Solids.
Chemistry.
States of Matter; Liquids and Solids
CE 336 Material Properties Atomic Structure determines: Physical Properties Chemical Properties Biological Properties Electromagnetic Properties.
John E. McMurry Robert C. Fay Lecture Notes Alan D. Earhart Southeast Community College Lincoln, NE General Chemistry: Atoms First Chapter 10 Liquids,
The Kinetic-Molecular Theory Of Matter.  The Kinetic-Molecular Theory was developed to explain the observed properties of matter.  Since matter can.
Chemistry. States of matter – SESSION IV Session Objectives.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 3: Microstructure of Solids Dr. Li Shi Department of Mechanical Engineering.
The Nature of Solids. A Model for Solids The particles in solids are not free to move about. They tend to vibrate about fixed points. In most solids,
STATES OF AGGREGATION AND CRYSTAL STRUCTURES.  Any material may be in either of the following state. Gas state Gas state Liquid state Liquid state Solid.
MSE 630 Introduction to Solid State Physics Topics: Structure of Crystals classification of lattices reciprocal lattices bonding.
 Dominated by... ◦ Closely packed particles ◦ Relatively fixed position ◦ Highest intramolecular attractions  Are... ◦ Definite shape and volume ◦ Definite.
Atoms in Combination: The Chemical Bond Chapter 10 Great Idea: Atoms bind together in chemical reactions by the rearrangement of electrons.
Lesson Starter Compare the plaster of Paris mixture before it hardens to the product after it hardens. Section 3 Solids Chapter 10.
Solids, liquids and gasses
Crystal Structure of Solids
States of Matter Solids. States of Matter  Objectives  Describe the motion of particles in solids and the properties of solids according to the kinetic-molecular.
Ceramics and Glasses Chapter 14. History Ceramics were some of the earliest of mankind’s structural materials Pots Bricks Low Tech High Tech.
1 Solids. 2 Structures of Solids Crystalline vs. Amorphous Crystalline solid: well-ordered, definite arrangements of molecules, atoms or ions. –Most solids.
EEE 3394 Electronic Materials
CHAPTER 2 : STRUCTURE OF METALS. TOPIC  1) ATOMIC ARRANGEMENT  2) ATOMIC STRUCTURE  3) BONDING BETWEEN ATOMS  4) LATTICE STRUCTURE  5) CRYSTAL SYSTEM.
8–1 CHM 105 LECTURE NOTE States of Matter; Liquids and Solids BY DR. J.J.GONGDEN’
Unit 1 Fundamentals 1  Atomic Structure?  Crystal Structure?  Types of Crystals?
Liquids and Solids. Intermolecular Forces  Intermolecular Forces are the attraction between molecules  They vary in strength, but are generally weaker.
Kintetic Molecular Theory
By Dr.Reham Mohammed Abdallah
Table of Contents The Kinetic-Molecular Theory of Matter
Materials Engineering
CH. 12 SOLIDS & MODERN MATERIALS
Kintetic Molecular Theory
CHAPTER 3: STRUCTURE OF CRYSTALLINE SOLIDS
States of Matter; Liquids and Solids
THE NATURE OF MATERIALS
Intermolecular Forces and
Bonding and Structure in Solids
Bonding and Structure in Solids
Crystallography and Structure
Chapter 12 Solids and Modern Materials
Solids Amorphous Solids: Disorder in the structures Glass
Atomic Structure and Bonding
Crystal and Amorphous Structure
Atomic Structure and Bonding
Properties of Solids and the Kinetic-Molecular Theory
SC-100 Class 15 Review Questions
States of Matter Solids.
Intermolecular Forces and
Kinetic Molecular Theory
MATERIALS SCIENCE Materials science investigates the relationships between the structures and properties of materials.
States of Matter; Liquids and Solids
Chapter 13.3 The Nature of Solids.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Crystal Geometry, Structure and its defects
NIKAM N.D. M.Sc.NET DEPARTMENT OF CHEMISTRY
Solids.
The Solid-State Structure of Metals and Ionic Compounds
Presentation transcript:

Štruktúra látok a štruktúrna analýza Úvod, látky amorfné, kryštalické, štruktúra amorfných materiálov. Operácie symetrie. Priestorová mriežka, kryštálová štruktúra. Kryštalografická symbolika. Symetria dvojrozmerných štruktúr. Symetria trojrozmerných štruktúr. Kryštalografické sústavy, Bravaisove mriežky, bodové a priestorové grupy. Symetria a fyzikálne vlastnosti kryštálov. Neumannov, Voigtov, Curieho princíp. Príklady štruktúr. Štruktúrne poruchy a ich experimentálne pozorovanie. Klasifikácia porúch. Bodové poruchy, dislokácie, vrstevné chyby. Difrakčné metódy. Laueho difrakčné podmienky, reciproká mriežka. Ewaldova konštrukcia, Braggova rovnica. Millerove indexy, difrakčné indexy, atómový a štruktúrny faktor. Intenzita difraktovaného žiarenia. Základné rtg difrakčné experimenty. Debyeova-Scherrerova metóda, Laueho metóda. Rtg difraktometria, Braggovo-Brentanovo usporiadanie, dvojosá a trojosá difraktometria. Zobrazovacie metódy, rtg topografia.

Introduction Literature: Samuel M. Allen, Edwin L. Thomas: The Structure of Materials, John Wiley & Sons, Inc., New York 1998 V. Valvoda, M. Polcarová, P. Lukáč: Základy strukturní analýzy, Karolinum, Praha 1992 Material Science and Engineering (MSE) – multidisciplinarity MSE tetrahedron Structure Properties Processing Performance

Structure – “definition” quantitative description of the arrangements of the components that make up the material on all relevant length scales chemical composition arrangement SiO2 thermal expansion coefficient (10-6 K-1) α1 = 13 α3 = 8 α = 0.5 (isotropic) low quartz – kremeň trigonal crystal vitreous silica – kremenné sklo amorphous

of some aspect of structure Descriptors (štruktúrne charakteristiky) conceptual scheme that provides a precise quantitative characterization of some aspect of structure Examples: bond length – dĺžka väzby unit cell – elementárna (základná) bunka symmetry elements – prvky symetrie coordination number – koordinačné číslo vacancy concentration – koncentrácia vakancií grain size – veľkosť zŕn correlation distance – korelačná vzdialenosť (dĺžka)

Chemical bond – chemická väzba bond type bond energy covalent ~ 5 eV (8×10-19 J) metallic ~ 0.5 eV ionic 1 – 3 eV van der Waals 0.001 – 0.1 eV bond length – dĺžka väzby 0.1 – 0.25 nm bond angles – uhol medzi väzbami (for covalent bonds) sizes of atoms /ions – atomic radii – atómové polomery depends on bond type orbital hybridisation – sp2, sp3

group of atoms coordination number – koordinačné číslo coordination shells – koordinačné sféry

group of atoms packing fraction – miera zaplnenia Vi – volume of individual structural units (atoms, molecules...) VT – volume (macroscopic) of the sample gases – Vv ~ 10-4 liquids and amorphous solids – Vv ~ 0.5

Classification of materials non-crystalline state (amorphous) crystalline state long range order – LRO usporiadanosť na diaľku short range order – SRO usporiadanosť nablízko tranlational symmetry!! lack of tranlational symmetry!! liquid crystals statistical parameters orientational order quasicrystals absence of translational symmetry or LRO sharp diffraction spots in TEM

Non-crystalline state liquid state – low viscosity kT > binding energy glassy state – high viscosity kT < binding energy similar structure – difference in dynamics temperature volume crystal glass liquid glass transition melting Tg Tm VF VF – free volume

Pair distribution function hard sphere model r g(r) 1 2R0 gas 4R0 r g(r) 1 2R0 4R0 liquid/glass r g(r) 2R0 4R0 6 12 8 primitive cubic monoatomic crystal correlation distance

Hard sphere model – model tvrdých gúľ average number of nearest neighbors r g(r) Bernal – 1959 – Random close-packed sphere model for fcc and hcp NN = 12 Vv = 0.7405 packing fraction Vv ~ 0.64

Random walk models – modely náhodnej prechádzky applications: shapes of flexible polymer molecules Brownian motion diffusion 1, 2, 3 dimensions constant or variable step length motion on fixed lattice motion in any direction

Random walk models – modely náhodnej prechádzky step length – l number of steps – n uncorrelated motion end-to-end displacement – Rn root-mean-square displacement polymer chain packing fraction n spheres of diameter D0

Fractal models expanding – dilatation symmetry fractal dimension D fractal object with “mass” M size R D is an integer for compact objects M ~ RD

Examples Menger sponge Koch snowflake polymer chain

Diffusion-limited aggregation Self-regulating heaters Fractals in material science Diffusion-limited aggregation simulation of growth Self-regulating heaters polyethylene-carbon black composite particles form conductive fractal structures Fracture correlation between fracture toughness and the fractal dimension of the fracture surface