Inference in first-order logic part 1

Slides:



Advertisements
Similar presentations
Inference in first-order logic
Advertisements

Inference in first-order logic
First-Order Logic.
ITCS 3153 Artificial Intelligence Lecture 15 First-Order Logic Chapter 9 Lecture 15 First-Order Logic Chapter 9.
Inference in first-order logic Chapter 9. Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward.
1 First Order Logic. 2 Knowledge Representation & Reasoning  Introduction Propositional logic is declarative Propositional logic is compositional: meaning.
Inference in FOL All rules of inference for propositional logic apply to first-order logic We just need to reduce FOL sentences to PL sentences by instantiating.
First-Order Logic Inference
1 FOL CS 331/531 Dr M M Awais Unification “It is an algorithm for determining the substitutions needed to make two predicate calculus expressions match”
1 FOL Resolution based Inferencing Resolution based rules studied earlier can lead to inferences, rules such as modus ponen, unit resolution etc… Other.
CSCE 580 Artificial Intelligence Ch.9: Inference in First-Order Logic
1 FOL CS 331 Dr M M Awais Inferencing Finding solution to queries Propositionalization –(For reference only, may leave slides 2 to 7) Unification –Forward.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Spring 2004.
Cooperating Intelligent Systems Inference in first-order logic Chapter 9, AIMA.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9.
Inference in first-order logic Chapter 9. Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward.
1 CS 4700: Foundations of Artificial Intelligence Carla P. Gomes Module: FOL Inference (Reading R&N: Chapter 8)
Cooperating Intelligent Systems Inference in first-order logic Chapter 9, AIMA.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Fall 2004.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Spring 2005.
Inference in First-Order Logic Inference Rules with Quantifiers The three new inference rules are as follows: Universal Elimination: For any sentence ,
1 Inference in First-Order Logic. 2 Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward chaining.
Cooperating Intelligent Systems Inference in first-order logic Chapter 9, AIMA.
CHAPTER 9 Oliver Schulte Inference in First-Order Logic.
Inference in First-Order Logic CS 271: Fall 2007 Instructor: Padhraic Smyth.
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Jan 26, 2012.
Logic review A summary of chapters 7, 8, 9 of Artificial Intelligence: A modern approach by Russel and Norving.
Inference in first-order logic I CIS 391 – Introduction to Artificial Intelligence AIMA Chapter (through p. 278) Chapter 9.5 (through p. 300)
1 Inference in first-order logic Chapter 9. 2 Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward.
Inference in first-order logic Chapter 9. Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward.
CS 416 Artificial Intelligence Lecture 12 First-Order Logic Chapter 9 Lecture 12 First-Order Logic Chapter 9.
March 14, 2006AI: Chapter 9: Inference in First- Order Logic 1 Artificial Intelligence Chapter 9: Inference in First- Order Logic Michael Scherger Department.
Inference in first- order logic. Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward chaining.
Computing & Information Sciences Kansas State University Friday, 29 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 16 of 42 Friday, 29 September.
Inference in First-Order Logic 부산대학교 전자전기컴퓨터공학과 인공지능연구실 김민호
1 Knowledge Representation & Reasoning First Order Logic chapter 6 Dr Souham Meshoul CAP492.
1 Inference in First-Order Logic CS 271: Fall 2009.
1 Inference in First Order Logic CS 171/271 (Chapter 9) Some text and images in these slides were drawn from Russel & Norvig’s published material.
5/18/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 13, 5/18/2005 University of Washington, Department of Electrical Engineering Spring.
1 First Order Logic (Syntax, Semantics and Inference)
An Introduction to Artificial Intelligence – CE Chapter 9 - Inference in first-order logic Ramin Halavati In which we define.
1 First Order Logic CS 171/271 (Chapters 8 and 9) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1/19 Inference in first-order logic Chapter 9- Part2 Modified by Vali Derhami.
Inference in first-order logic
Inference in First Order Logic. Outline Reducing first order inference to propositional inference Unification Generalized Modus Ponens Forward and backward.
Inference in First-Order Logic Chapter 9. Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward.
1 Chaining in First Order Logic CS 171/271 (Chapter 9, continued) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Presented By S.Yamuna AP/CSE
Inference in first-order logic
Logical Agents Chapter 7.
School of Computer Science & Engineering
Inference in First-Order Logic
Knowledge Representation & Reasoning
Introduction to Artificial Intelligence
First Order Logic.
Inference in First-Order Logic
Inference in first-order logic part 1
Example of Knowledge Base
Artificial intelli-gence 1:Inference in first-order logic
Artificial Intelligence
Introduction to Artificial Intelligence
Artificial intelligence: Inference in first-order logic
Artificial Intelligence Inference in First Order Logic
Notes 9: Inference in First-order logic
Inference in first-order logic
Inference in First Order Logic (1)
First-Order Logic Inference
CS 8520: Artificial Intelligence
First-Order Logic Prof. Dr. Widodo Budiharto 2018
Presentation transcript:

Inference in first-order logic part 1 Chapter 9 Modified by Vali Derhami

Outline Reducing first-order inference to propositional inference Unification Generalized Modus Ponens Forward chaining Backward chaining Resolution

Universal instantiation (UI) Subst(, a) denote the result of applying the substitution  to the sentence a. Every instantiation of a universally quantified sentence is entailed by it: Here v is variable, and α is a sentence. v α Subst({v/g}, α) for any variable v and ground term (ترم بدون متغیر ( g E.g., x King(x)  Greedy(x)  Evil(x) yields: {x/John}: King(John)  Greedy(John)  Evil(John) {x/Richard}: King(Richard)  Greedy(Richard)  Evil(Richard) {x/Father(John)}: King(Father(John))  Greedy(Father(John))  Evil(Father(John)). . substitution : جانشین سازی

Existential instantiation (EI) For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base: v α Subst({v/k}, α) E.g., x Crown(x)  OnHead(x,John) yields: provided C1 is a new constant symbol, called a Skolem constant توجه شود C1 نباید در هیچ کجای دیگر از KB امده باشد. پایگاه دانش جدید با پایگاه دانش قدیمی هم ارز نیست، لیکن هم ارز استنباطی است. اگر پایگاه دانش اصلی ارضا پذیر باشد، پایگاه دانش جدید نیز ارضا پذیر است.

Reduction to propositional inference Suppose the KB contains just the following: x King(x)  Greedy(x)  Evil(x) King(John) Greedy(John) Brother(Richard,John) Instantiating the universal sentence in all possible ways, we have: King(John)  Greedy(John)  Evil(John) King(Richard)  Greedy(Richard)  Evil(Richard) The new KB is propositionalized(فرم گزاره ای): proposition symbols are King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd. Every FOL KB can be propositionalized so as to preserve entailment (هر پایگاه دانش مرتبه اول می تواند گزاره ای شود به نحوی که ایجاب حفظ شود.) (A ground sentence is entailed by new KB iff entailed by original KB) Idea: Propositionalize KB and query, apply resolution, return result Problem: with function symbols, there are infinitely many ground terms, e.g., Father(Father(Father(John)))

Reduction contd. Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it can be entailed by a finite subset of the propositionalized KB اگر جمله يα توسط يک FOL KB قابل ايجاب باشد آنگاه اين جمله توسط زيرمجموعه محدودي از پايگاه دانش گزاره اي سازي شده قابل ايجاب است. Idea: For n = 0 to ∞ do create a propositional KB by instantiating with depth 1-n terms see if α is entailed by this KB بدین معنی که ابتدا زیر مجموعه گزاره ای از پایگاه دانش با عمق یک (ثوابت جا گذاری شده و برای توابع تنها عمق اول لحاظ شود) ایجاد و استنتاج انجام اگر نتیجه ایجاب شد که تمام است وگرنه برای عمق دوم و .... Problem: works if α is entailed, loops if α is not entailed

Reduction contd. Theorem: Turing (1936), Church (1936):The question of entailment for first-order logic is semidecidable (نیمه تصمیم پذیر) that is, algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence. الگوريتم هايي وجود دارند كه براي هر جمله قابل ايجاب پاسخ بله را توليد مي كنند، ولي الگوريتمي وجود ندارد كه براي هر جمله اي كه قابل ايجاب نباشد پاسخ خير توليد كند.

Problems with propositionalization Propositionalization seems to generate lots of irrelevant sentences. E.g., from: x King(x)  Greedy(x)  Evil(x) King(John) y Greedy(y) Brother(Richard,John) it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant با p تا predicate از نوع k تايي و n ثابت p·nk نمونه سازي وجود دارد.

Unificationیکسان سازی We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(y) match King(John) and Greedy(John) Unify(p,q) = θ if Subst(θ,p) = Subst(θ,q) p q θ Knows(John,x) Knows(John,Jane) Knows(John,x) Knows(y,OJ) Knows(John,x) Knows(y,Mother(y)) Knows(John,x) Knows(x,OJ)

Unification We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y) θ = {x/John,y/John} works Unify(p,q) = θ if Subst(θ,p) = Subst(θ,q) p q θ Knows(John,x) Knows(John,Jane) {x/Jane} Knows(John,x) Knows(y,OJ) Knows(John,x) Knows(y,Mother(y)) Knows(John,x) Knows(x,OJ)

Unification We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y) θ = {x/John,y/John} work Unify(α,β) = θ if Subst(θ,α) = Subst(θ,β) p q θ Knows(John,x) Knows(John,Jane) {x/Jane}} Knows(John,x) Knows(y,OJ) {x/OJ,y/John}} Knows(John,x) Knows(y,Mother(y)) Knows(John,x) Knows(x,OJ)

Unification We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y) θ = {x/John,y/John} works Unify(α,β) = θ if Subst(θ,α) = Subst(θ,β) p q θ Knows(John,x) Knows(John,Jane) {x/Jane}} Knows(John,x) Knows(y,OJ) {x/OJ,y/John}} Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}} Knows(John,x) Knows(x,OJ)

Unification We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y) θ = {x/John,y/John} works Unify(α,β) = θ if αθ = βθ p q θ Knows(John,x) Knows(John,Jane) {x/Jane}} Knows(John,x) Knows(y,OJ) {x/OJ,y/John}} Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}} Knows(John,x) Knows(x,OJ) {fail} Standardizing apart (جداسازی استاندارد) eliminates overlap of variables, e.g., Knows(z17,OJ) {x/Oj, z17/John}

Unification To unify Knows(John,x) and Knows(y,z), θ = {y/John, x/z } or θ = {y/John, x/John, z/John} The first unifier is more general than the second. There is a single most general unifier (MGU) (عمومی ترین یکسان ساز)that is unique up to renaming of variables. MGU = { y/John, x/z }

The unification algorithm

The unification algorithm

Generalized Modus Ponens (GMP) p1', p2', … , pn', ( p1  p2  …  pn q) qθ Example: p1' is King(John) p1 is King(x) p2' is Greedy(y) p2 is Greedy(x) θ is {x/John,y/John} q is Evil(x) q θ is Evil(John) GMP used with KB of definite clauses (exactly one positive literal) (Clause: ترکیب OR از لیترالها) definite clauses:Horn clauses with exactly one positive literal کلاز های معین: ترکیب or از لیترالها که دقیقا یکی از انها مثبت است All variables assumed universally quantified (فرض میشود همه متغیرها سور عمومی دارند) where pi'θ = pi θ for all i , pi,p’I , q and atomic sentence هورنفرم: تركيب OR از ليترال ها كه حداكثر يكي از آنها مثبت است.

Soundness of GMP Need to show that p1', …, pn', (p1  …  pn  q) ╞ qθ provided that pi'θ = piθ for all i Lemma: For any sentence p, we have p ╞ pθ by UI (p1  …  pn  q) ╞ (p1  …  pn  q)θ = (p1θ  …  pnθ  qθ) p1', \; …, \;pn' ╞ p1'  …  pn' ╞ p1'θ  …  pn'θ pi'θ= piθ From 1 and 2 and 3 , qθ follows by ordinary Modus Ponens

Example knowledge base The law says that it is a crime for an American to sell weapons to hostile (متخاصم)nations. The country Nono, an enemy of America, has some missiles (موشک), and all of its missiles were sold to it by Colonel West, who is American. قانون می گوید که برای یک آمریکایی فروش اسلحه به کشورهای متخاصم جرم می باشد. کشور نونو که یکی از دشمنهای امریکا هستتعدادی موشک دارد و همه این موشکلها توسط کلنل وست که امریکایی هست به آنها فروخته شده است. Prove that Colonel West is a criminal(مجرم) قانون می گوید که برای یک آمریکایی فروش اسلحه به کشورهای متخاصم جرم می باشد. کشور نونو که یکی از دشمنهای امریکا هستتعدادی موشک دارد و همه این موشکلها توسط کلنل وست که امریکایی هست به آنها فروخته شده است.

Example knowledge base contd. ... it is a crime for an American to sell weapons to hostile nations: R1: American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) Owns(Nono,M1) and Missile(M1) … all of its missiles were sold to it by Colonel West R2: Missile(x)  Owns(Nono,x)  Sells(West,x,Nono) Missiles are weapons: R3: Missile(x)  Weapon(x) An enemy of America counts as "hostile“: R4: Enemy(x,America)  Hostile(x) West, who is American … American(West) The country Nono, an enemy of America … Enemy(Nono,America)

Example knowledge base contd. R1: American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) R2: Missile(x1)  Owns(Nono,x1)  Sells(West,x1,Nono) R3: Missile(x2)  Weapon(x2) R4: Enemy(x3,America)  Hostile(x3) Owns(Nono,M1) Missile(M1) American(West) Enemy(Nono,America)

Forward chaining proof

Forward chaining proof R2: Missile(x1)  Owns(Nono,x1)  Sells(West,x1,Nono) R3: Missile(x2)  Weapon(x2) R4: Enemy(x3,America)  Hostile(x3) Owns(Nono,M1) Missile(M1) American(West) {x3/Nono}, {x2/M1}, {x1/M1}

Forward chaining proof R1: American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x) {x/west, y/M1, z/Nono} حقایق اولیهن در لایه پایین ، حقایق استناج شده در مرحله اول در لایه میانی، و در لایه آخر حقایق استناج شده در مرحله دوم

Forward chaining algorithm

Properties of forward chaining Sound and complete(کامل و صحیح) for first-order definite clauses Datalog clauses= first-order definite clauses + no functions FC terminates for Datalog in finite number of iterations FC براي Datalog با تعداد تكرارهاي محدودي متوقف مي شود. May not terminate in general if α is not entailed در حالت كلي، اگر پايگاه دانشα را ايجاب نکند، ممكن است متوقف نشود. This is unavoidable: entailment with definite clauses is semidecidable (نیمه تصمیم پذیر) اين امر اجتناب ناپذير است: ايجاب با Clauseهاي معين نيمه تصميم پذير است

Efficiency of forward chaining Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration k-1 در تکرار k نياز به تطبيق قانوني كه هيچ كدام از شرايطش در تكرار k-1 اضافه نشده اند، نيست  match each rule whose premise contains a newly added positive literal Matching itself can be expensive: Database indexing allows O(1) retrieval of known facts شاخص بندي پايگاه داده Database indexing اجازه مي دهد كه حقايق شناخته شده در زمان O(1) بازيابي شوند. e.g., query Missile(x) retrieves Missile(M1) Forward chaining is widely used in deductive (استقرایی) databases