Superconducting qubit for quantum thermodynamics experiments

Slides:



Advertisements
Similar presentations
Dissipated work and fluctuation relations in driven tunneling
Advertisements

Generalized Jarzynski Equality under Nonequilibrium Feedback
Normal metal - superconductor tunnel junctions as kT and e pumps
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
CQED Susceptibility of Superconducting Transmons coupled to a Microstrip Resonator Cavity David Pappas, Martin Sandberg, Jiansong Gao, Michael Vissers.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
Entanglement and Quantum Correlations in Capacitively-coupled Junction Qubits Andrew Berkley, Huizhong Xu, Fred W. Strauch, Phil Johnson, Mark Gubrud,
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Quantum Trajectory Method in Quantum Optics Tarek Ahmed Mokhiemer Graduate Student King Fahd University of Petroleum and Minerals Graduate Student King.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
A two-qubit conditional quantum gate with single spins F.Jelezko, J. Wrachtrup I. Popa, T. Gaebel, M. Domhan, C. Wittmann Univ. of Stuttgart.
ENTANGLEMENT IN SMALL SELF-CONTAINED QUANTUM FRIDGES NICOLAS BRUNNER, RALPH SILVA, PAUL SKRZYPCZYK, MARCUS HUBER NOAH LINDEN & SANDU POPESCU SINGAPORE.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
M. Grajcar Comenius University, Slovakia
Quantum systems for information technology, ETHZ
SPEC, CEA Saclay (France),
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Quantum Trajectories - ”revisiting the past” IICQI-14, Isfahan, Theory: ”Past quantum states”, Phys. Rev. Lett. 111, (2013) Søren Gammelmark,
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Meet the transmon and his friends
Interference in BEC Interference of 2 BEC’s - experiments Do Bose-Einstein condensates have a macroscopic phase? How can it be measured? Castin & Dalibard.
Alireza Shabani, Jan Roden, Birgitta Whaley
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
PICO-group SAB presentation, Nov 9, 2006, Jukka Pekola Dr. Alexander Savin senior scientist Dr. Matthias Meschke research scientist Dr. Juha Vartiainen.
Dynamics of a Nanomechanical Resonator Coupled to a Single Electron Transistor Miles Blencowe Dartmouth College.
Adiabatic Quantum Computation with Noisy Qubits M.H.S. Amin D-Wave Systems Inc., Vancouver, Canada.
. What is truly quantum about quantum thermodynamics? Thermodynamic laws and bounds are not well understood for quantum-system manipulations. We challenge:
Measuring Quantum Coherence in the Cooper-Pair Box
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
The rf-SQUID Quantum Bit
Thermodynamics, fluctuations, and response for systems out of equilibrium Shin-ichi Sasa (University of Tokyo) 2007/11/05 in collaboration with T.S. Komatsu,
|| Quantum Systems for Information Technology FS2016 Quantum feedback control Moritz Businger & Max Melchner
Calorimetry and finite bath thermodynamics Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Stochastic thermodynamics and Fluctuation theorems
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Maxwell's Demon in a circuit - refrigerator powered by information
Circuit QED Experiment
Superconducting Qubits
Josephson far-infrared photon detectors
Normal metal - superconductor tunnel junctions as kT and e pumps
Theoretical Investigations at
國立交通大學電子物理系 專題演講 Quantum optics in 3-level superconducting artificial atoms: Controlling one-photon and two-photon transparency Abstract We experimentally.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance.
Stabilization of entanglement in qubits- photon systems: Effects of parametric driving and inhomogeneous broadening S. V. Remizov 1,2, A. A. Zhukov 1,3,
|  Introduction to Quantum Computation Bruce Kane
Mario Palma.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Josephson Flux Qubits in Charge-Phase Regime
Hiroyuki Nojiri, Department of Physics, Okayama University
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Superconducting qubit for quantum thermodynamics experiments Jukka Pekola, Aalto University, Helsinki, Finland Outline: 1. Measuring heat current in a circuit, thermometry 2. Experiment on quantum heat switch A. Ronzani et al., arxiv:1801.09312 3. On-going work and future: qubit heat engines and refrigerators single microwave photon detection Yu-Cheng Chang Alberto Ronzani Bayan Karimi ChiiDong Chen Jorden Senior Joonas Peltonen

Measuring heat currents Steady-state heating (”bolometer”) Response to a heat pulse (”calorimeter”) Ih C,Tbath+DT DT= Ih/Gth Gth Tbath DT

NIS-thermometry Probes electron temperature of N island (and not of S!) Phys. Rev. Appl. 4, 034001 (2015).

Temperature of a qubit? Couple the qubit to a true thermal bath BATH T

Experiment on quantum heat switch A. Ronzani et al., arxiv:1801.09312 RH PC F qubit PC RC B. Karimi, J. Pekola, M. Campisi, and R. Fazio, Quantum Science and Technology 2, 044007 (2017).

Experimental realization QUBIT WITHOUT ABSORBERS 10 mm 3 mm 1 mm TRANSMON QUBIT RESERVOIR AND THERMOMETERS

Shunted l / 4 resonators, measurement of Q Q = Z0 / R R ≈ 2 W E:\Matlab\data\SNSshuntResonatorV4_20171125-12\Fig2.m Superconducting shunt, Q = 17 000 Normal (copper) shunt, Q = 18

Spectroscopy to determine circuit parameters fr = 5.39 GHz g = 0.020 g = - 0.015 a = 0.008 Two tone spectroscopy r = fqubit/fr

Experimental observation, samples I and II DT (mK) Q ≈ 20 Q ≈ 3 magnetic flux magnetic flux

Theory vs experiment: sample I RH RC g g g’  Q-1 g’  Q-1 Resonator SQUID Resonator gQ ~ 1, ”quasi-Hamiltonian” model works

Theory vs experiment: sample II RH RC g g g’  Q-1 g’  Q-1 Resonator SQUID Resonator gQ << 1, ”non-Hamiltonian” model works Cooling at distance of 4 mm by mw photons

Qubit as a quantum refrigerator RH Q1 W qubit - Q2 RC A. Niskanen, Y. Nakamura, JP, PRB 76, 174523 (2007); B. Karimi and JP, PRB 94, 184503 (2016).

Stochastic thermodynamics of a driven qubit Frank Hekking and JP, PRL 111, 093602 (2013); Horowitz and Parrondo, NJP 15, 085028 (2013) Quantum evolution Classical evolution g g TIME

Work measurement in a quantum system Two-measurement protocol (TMP): W = Ef – Ei J. Kurchan, 2000 Since W = DU + Q, and DU = Ef – Ei , this measurement works only for a closed system TIME QUBIT OPERATION 1st MEASUREMENT 2nd MEASUREMENT Kurchan 2000, Talkner et al. 2007

Quantum trajectories Objective: unravel into single realizations (”single experiments”) instead of averages (the latter ones come naturally from the density matrix) Construct the Monte Carlo wave function (MCWF) for the system Dalibard, Castin and Mölmer 1992 Plenio and Knight 1998 At t = t + Dt, we have three possibilities: Relaxation with probability 2. Excitation with probability 3. Evolution without photon absorption/emission Here the Hamiltonian is non-hermitian (to preserve the norm)

Quantum jump approach for analyzing distribution of dissipation We apply the jump method to a driven qubit p pulse with dissipation F. Hekking and JP, PRL 111, 093602 (2013).

Calorimetry for measuring mw photons Requirements for calorimetry on single microwave quantum level. Photons from relaxation of a superconducting qubit. E photon source “artificial atom” absorber temperature readout electronics T(t) V(t) Typical parameters: Operating temperature T = 0.1 K E/kB = 1 K, C = 300...1000kB DT ~ 1 - 3 mK, t ~ 0.01 - 1 ms NET = 10 mK/(Hz)1/2 is sufficient for single photon detection dE = NET (C Gth)1/2 JP, P. Solinas, A. Shnirman, and D. V. Averin., NJP 15, 115006 (2013).

Fast NIS thermometry on electrons Read-out at 600 MHz of a NIS junction, 10 MHz bandwidth S. Gasparinetti et al., Phys. Rev. Applied 3, 014007 (2015); B. Karimi et al., in preparation

Summary Measurement of heat currents in circuits Quantum heat switch based on a superconducting qubit realized and analyzed; two regimes of operation observed depending on the gQ value arxiv:1801.09312 Quantum refrigerators and heat engines and stochastic quantum thermodynamics are envisioned based on superconducting qubits and thermometry/calorimetry

Frank in Finland Helsinki 2005 Photos: Erika Börsje-Hekking