INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS

Slides:



Advertisements
Similar presentations
Complex Ions.
Advertisements

Infrared spectroscopy of metal ion-water complexes
Transition Metals Mercury (Hg) is the only transition metal that is not a solid. The transition metals all have valence electrons in a d subshell. Like.
Transition Metal Chemistry and Coordination Compounds Green/Damji – Chapter 3 Chang - Chapter 22 Copyright © The McGraw-Hill Companies, Inc. Permission.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Carbon Dioxide Clusters and Copper Complexes Formed in Argon Matrices Michael E. Goodrich & David T. Moore Chemistry Department, Lehigh University Bethlehem.
CHEMISTRY 1000 Topic #3: Colour in Chemistry Fall 2014 Dr. Susan Findlay CdS Cr 2 O 3 TiO 2 Mn 3 (PO 4 ) 2 Co 2 O 3 Fe 2 O 3 Co 2 O 3 Cr 2 O 3 Cu 2 O UO.
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
COORDINATION COMPOUNDS COMPLEX By s. r. ratnam.
Structures and Spin States of Transition-Metal Cation Complexes with Aromatic Ligands Free Electron Laser IRMPD Spectra Robert C. Dunbar Case Western Reserve.
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
OSU Conference 2010: Symposium on Metal Containing Molecules
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Photoinitiation of intra-cluster electron scavenging: An IR study of the CH 3 NO 2 ·(H 2 O) 6 anion Kristin Breen, Timothy Guasco, and Mark Johnson Department.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Inorganic Chemistry (2)
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
Robert C. Dunbar Case Western Reserve University Nicolas Polfer University of Florida Giel Berden FOM Institute for Plasma Physics Jos Oomens FOM Institute.
Inorganic Chemistry (2)
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
************************************************* Chemistry for Engineers Homework1 Atomic Structure Answer Key *************************************************
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Transition Metal Chemistry. d orbital splitting in a typical transition metal atom.
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
Metal Hydroxide Ion Pairs: Solvation Trends, Charge Transfer, and Vibrational Stark Shift Modulation. Jonathan M. Voss, Brett M. Marsh, Jia Zhou, Etienne.
PFI-ZEKE Spectroscopy of Aluminum-Imidazole and -Pyrimidine Complexes JUNG SUP LEE, XU WANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG University of Kentucky.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF LANTHANIDE (Gd, Lu) BENZENE COMPLEXES M. ROUDJANE, S. KUMARI and D.-S. YANG University of Kentucky Lexington,
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
Electronic Configuration of Ions Nonmetallic elements form anions (-) Hydrogen atoms gain one electron to form H- with a stable 1s2 electron configuration.
Ce-Promoted Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry University of Kentucky, Lexington,
How Do Networks of Water Accommodate an Excess Electron?, Joseph R. Roscioli, and Mark A. Johnson Nathan I. Hammer, Joseph R. Roscioli, and Mark A. Johnson.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
OCR: Energetics, Equilibrium and Elements. Physical Properties  A transition metal is a d block element that has a partially filled d-subshell of electrons.
INFARED SPECTROSCOPY OF Mn(CO 2 ) n − CLUSTER ANIONS Michael C Thompson, Jacob Ramsay and J. Mathias Weber June 24, th International Symposium.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
BORONYL MIMICS GOLD: A PHOTOELECTRON SPECTROSCOPY STUDY Tian Jian, Gary V. Lopez, Lai-Sheng Wang Department of Chemistry, Brown University International.
metal ion in a spherical
Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd.
Near-Infrared Spectroscopy of Small Protonated Water Clusters
Transition elements Introduction
5.1 Ionic Bonds: Chemical Bonding
Haochen Ke, Amy Nicely, James Lisy
Electronic Spectrum of Cryogenic Ruthenium-Tris-Bipyridine Dications
AH Chemistry – Unit 1 Transition Metals.
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
The Chemistry of Coordination Compounds
Gas Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs
Simultaneous Deposition of Mass Selected Anions and Cations: Improvements in Ion Delivery for Matrix Isolation Spectroscopy Michael E. Goodrich and David.
Amy L. Nicely and James M. Lisy
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Vibrational Spectroscopy and Theory of Cu+(CH4)n and Ag+(CH4)n (n=1-6)
Allen M. Ricks and Michael A. Duncan Department of Chemistry
Laser spectroscopy and ab initio calculations on TaF
Chapter 23 Transition Metals and Coordination Chemistry
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Solvent-enabled/controlled cluster-anion chemistry
Transition elements Introduction
Vibrational Predissociation Spectroscopy of Uranium Complexes
Infrared Spectroscopy of Cluster Anions Containing Aromatic Molecules
Time-Resolved Recombination Dynamics of Large IBr-(CO2)n (n=11-14) Clusters Joshua P. Martin, Joshua P. Darr, Jack Barbera, Matt A. Thompson, Robert.
Presentation transcript:

INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS B. J. Knurr & J. Mathias Weber June 19, 2014

Motivation: Prior results on transition metal-CO2 complex anions: Au and Ag form formate-like complexes involving only one CO2 ligand CO2 is partially reduced in these complexes, reduction depends strongly on solvation.  Important implications for CO2 reduction catalysis!!! B. J. Knurr & JMW, JACS 134 (2012) 18804−18808 B. J. Knurr & JMW, J. Phys. Chem. A 117 (2013) 10764–10771 Cartoon representation of a negatively charged metal catalyst supported on a thin film with liquid CO2 as a solvnet The negative charge is replenished by the metal electrode [AuCO2]-

What about other interesting transition metals?

What about other interesting transition metals? Electron configurations: Au: [Xe] (4f)14 (5d)10 (6s)1 Ag: [Kr] (4d)10 (5s)1 Cu: [Ar] (3d)10 (4s)1 Co: [Ar] (4s)2 (3d)7 Ni: [Ar] (4s)2 (3d)8 What will be the effect of a drastic change in electron configuration? Cobalt, Nickel New chemistry???

Experimental Method: IR Photodissociation cluster + h

Experimental Method: IR Photodissociation cluster + h hot cluster

Experimental Method: IR Photodissociation cluster + h hot cluster

Experimental Method: IR Photodissociation cluster + h hot cluster fragments

Experimental Setup Nd:YAG IR-OPO/OPA electron gun 600 – 4500 cm-1 0.1-10 mJ / 5 ns IR-OPO/OPA mass gate power meter ion source

Experimental Setup [M·(CO2)n]- Metal CO2 Ion source: laser vaporization & entrainment electron beam [M·(CO2)n]- Metal 355 nm Not spectators Say evaporate CO2 from the cluster CO2

IR Spectra of [Au(CO2)n]- 3 4 5 6 7 8 9 10 11 12 13 B. J. Knurr & JMW, JACS 134 (2012) 18804−18808

[Co(CO2)n]- [Co(CO2)n]- clusters charge carrier solvent [Co(CO2)n]- clusters Fragments observed only for n ≥ 3  first two CO2 units are strongly bound to the metal atom No significant change in dominant IR signatures  No change of dominant structural motif with increasing cluster size B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

[Co(CO2)n]- [Co(CO2)n]- clusters – Structures B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

[Co(CO2)n]- [Co(CO2)n]- clusters – Structures Exp., n= 3 Lowest energy (insertion) structure is not the dominant motif. “Butterfly” structures give best fit to experimental spectrum. B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

[Co(CO2)n]- [Co(CO2)n]- clusters – Structures Exp., n=4 Lowest energy (insertion) structure is not the dominant motif. “Butterfly” structures give best fit to experimental spectrum. Calculated spectra corroborate robustness w.r. to solvation. Calculated partial charges: Co  +1; CO2  -1 B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

d-orbitals in isolated metal atom d-block in octahedral complex t2g eg Interactions of the d-block in octahedral transition metal complexes (Oh) d-orbitals in isolated metal atom d-block in octahedral complex t2g eg From: Yves Jean “Molecular Orbitals of Transition Metal Complexes”

Interactions of the d-block in transition metal complexes Square-planar complexes (D4h) eg 3a1 b2 b2 a2 1a1 t2g

[Co(CO2)n]- 3a1 b2 a2 1a1 2a1 B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

[Co(CO2)n]- B. J. Knurr & JMW, J. Phys. Chem. A (2014), in press

Conclusions Co complexes with CO2 show bidentate metal-ligand interactions with M-C and M-O bonds Electronic structure: monovalent metal cation bound to anionic CO2 ligands

Alfred P. Sloan Research Fellowship Dramatis Personae NSF AMO PFC Alfred P. Sloan Research Fellowship NSF CAREER Award

Thank you for your attention