Hemispheric asymmetry of ionospheric scintillations during the 2015 St

Slides:



Advertisements
Similar presentations
SuperDARN is a network of HF radars (8-20 MHz) used to study the convection in the Earth's ionosphere at altitudes between 90 and 400 km and at magnetic.
Advertisements

Manifestation of strong geomagnetic storms in the ionosphere above Europe D. Buresova(1), J. Lastovicka(1), and G. DeFranceschi(2) (1)Institute of Atmospheric.
HF management communication system and link optimization Bruno Zolesi. Istituto Nazionale di Geofisica e Vulcanologia.
Generation of the transpolar potential Ramon E. Lopez Dept. of Physics UT Arlington.
Formation of the Magnetosphere 1 Solar Wind. Formation of the Magnetosphere 2 Solar Wind Bow Shock Magnetosheath.
E. Amata M. Candidi (1), M.F. Marcucci (1), S. Massetti (1), P. Francia (3), U. Villante (3) (1) Istituto di Fisica dello Spazio Interplanetario (IFSI),
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
IMF Bx influence on the magnetotail neutral sheet geometry and dynamics E. Gordeev, M. Amosova, V. Sergeev Saint-Petersburg State University, St.Petersburg,
Anti-parallel versus Component Reconnection at the Magnetopause K.J. Trattner Lockheed Martin Advanced Technology Center Palo Alto, CA, USA and the Polar/TIMAS,
Solar wind-magnetosphere coupling Magnetic reconnection In most solar system environments magnetic fields are “frozen” to the plasma - different plasmas.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
AGU fall meeting, December 5-9, 2011, San Francisco INGV Spatial organization of foreshocks as a tool for forecasting large earthquakes E. Lippiello 1,
Second European Space Weather Week ESA/ESTEC Noordwijk, November 2005 SCINTILLATION MONITORING RESULTS DURING THE 30 OCTOBER 2003 SPACE WEATHER.
M. Wiltberger On behalf of the CMIT Development Team
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Magnetospheric ULF wave activity monitoring based on the ULF-index OLGA KOZYREVA and N. Kleimenova Institute of the Earth Physics, RAS.
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
Magnetosphere-Ionosphere coupling processes reflected in
An Atmospheric Vortex as the Driver of Saturn’s Electromagnetic Periodicities: 1. Global Simulations Xianzhe Jia 1, Margaret Kivelson 1,2, and, Tamas Gombosi.
Constraining Substorm Onset from Space- and Ground-Based Observations Department of Space & Climate Physics Mullard Space Science Laboratory A. P. Walsh.
Problems in Space Physics 長井嗣信 東京工業大学. 磁気圏の未解決問題 「いつも同じ話をしている」 1.容易に解決できそうだが 2.何が観測的に問題なのか 3.今後どうすべきか.
MAGNETOSPHERIC RESPONSE TO COMPLEX INTERPLANETARY DRIVING DURING SOLAR MINIMUM: MULTI-POINT INVESTIGATION R. Koleva, A. Bochev Space and Solar Terrestrial.
Earth’s Magnetosphere NASA Goddard Space Flight Center
Season-dependent magnetotail B y and associated field-aligned currents A.Petrukovich 1 and R. Lukianova 2,1 1 Space Research Institute, Moscow,
Forecast of Geomagnetic Storm based on CME and IP condition R.-S. Kim 1, K.-S. Cho 2, Y.-J. Moon 3, Yu Yi 1, K.-H. Kim 3 1 Chungnam National University.
Testing the Equipotential Magnetic Field Line Assumption Using SuperDARN Measurements and the Cluster Electron Drift Instrument (EDI) Joseph B. H. Baker.
ESS 7 Lecture 13 October 29, 2008 Substorms. Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite.
CEDAR 2008 Workshop Observations at the Plasmaspheric Boundary Layer with the Mid-latitude SuperDARN radars Mike Ruohoniemi, Ray Greenwald, and Jo Baker.
Adjustable magnetospheric event- oriented magnetic field models N. Yu. Ganushkina (1), M. V. Kubyshkina (2), T. I. Pulkkinen (1) (1) Finnish Meteorological.
TWELFTH EUROPEAN SPACE WEATHER WEEK (ESWW12) OOSTENDE, BELGIUM, NOVEMBER, 2015 Alessandro Settimi (1)*, Michael Pezzopane (1), Marco Pietrella.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
Magnetospheric Current System During Disturbed Times.
Particle precipitation has been intensely studied by ionospheric and magnetospheric physicists. As particles bounce along the earth's magnetic fields they.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
1 CSSAR Center for Space science and Applied Research Chinese academy of Sciences FAC in magnetotail observed by Cluster J. K. Shi (1), Z. W. Cheng (1),
1 NSSC National Space Science Center, Chinese academy of Sciences FACs connecting the Ionosphere and Magnetosphere: Cluster and Double Star Observations.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
Dario Sabbagh (1),(2), Carlo Scotto (2), Vittorio Sgrigna (1) (1) Università degli Studi Roma Tre, Dipartimento di Matematica e Fisica, Via della Vasca.
THE SAINT PATRICK GEOMAGNETIC STORM MONITORED BY THE ERICA PROJECT Gabriella Povero* 1, Prayitno Abadi 2, Lucilla Alfonsi 3, Domenico Di Mauro 3, Fabio.
U. Villante – Professore Ordinario; M. Vellante - Professore Associato; P. Francia - Professore Associato; M. De Lauretis - Ricercatore T. I.; E. Pietropaolo.
Dynamics of the auroral bifurcations at Saturn and their role in magnetopause reconnection LPAP - Université de Liège A. Radioti, J.-C. Gérard, D. Grodent,
GOES Data Status Mutual Benefits of NASA THEMIS and NOAA GOES
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
CEDAR Frontiers: Daytime Optical Aeronomy Duggirala Pallamraju and Supriya Chakrabarti Center for Space Physics, Boston University &
Ultrashort pulse characterisation
effects of using different magnetic field models
Night-side effects on the plasma convection in the polar ionosphere due to a Sudden Impulse (SI) of solar wind dynamic pressure Coco, I.(1,2,3); Amata,
Lecture 12 The Importance of Accurate Solar Wind Measurements
Ionospheric Science and Space Weather
Heliosphere impact on geospace K. Kauristie, R. Harrison, A
ICESTAR: Solar-terrestrial and aeronomy research during the International Polar Year Kirsti Kauristie1, Allan Weatherwax2, Richard Harrison3, Richard.
Cianchini, F. J. Pavon-Carrasco, C. Cesaroni, L. Spogli
CEDAR Frontiers – Understanding the Polar Cap Ionosphere-Magnetosphere System Canadian High-Arctic Ionospheric Network (CHAIN) Jayachandran P. T., University.
Johns Hopkins Applied Physics Laboratory, Laurel MD, USA
THEMIS and Space Weather
Evidence for Dayside Interhemispheric Field-Aligned Currents During Strong IMF By Conditions Seen by SuperDARN Radars Joseph B.H. Baker, Bharat Kunduri.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Ionosphere, Magnetosphere and Thermosphere Anthea Coster
Comprehensive analysis of the Geoeffective Solar Event of June 21, 2015: Effects on the Magnetosphere, Plasmasphere and Ionosphere Systems - part 2. Piersanti.
Environmental conditions during the charging anomaly of the two geosynchronous satellites reported: TELSTAR 401 and Galaxy 15 Elena Saiz, A. Guerrero,
Oerstedt+Champ+Swarm → Empirical models →New parameters/knowledge
Anemone Structure of AR NOAA and Related Geo-Effective Flares and CMEs
Advances in Ring Current Index Forecasting
The SEGMA array: current status
Magnetosphere: Bow Shock Substorm and Storm
A statistical study of Cluster and ground-based observations of Pi1B pulsations at substorm onset Marc Lessard1, Eric Lund1, Christopher Mouikis1, Yasong.
A. Ippolito(1), C. Cesaroni(1) and L. Spogli(1,2)  
Added-Value Users of ACE Real Time Solar Wind (RTSW) Data
Magnetosphere: Structure and Properties
Presentation transcript:

Hemispheric asymmetry of ionospheric scintillations during the 2015 St Hemispheric asymmetry of ionospheric scintillations during the 2015 St. Patrick’s Day storm Giulia D’Angelo1, Mirko Piersanti2,3, Igino Coco4, Lucilla Alfonsi4, Luca Spogli4,5 1Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Rome, Italy. 2Dipartimento di Scienze Fisiche e Chimiche, Università di L’Aquila, L’Aquila, Italy. 3Consorzio Area di Ricerca in Astrogeofisica, Università di L’Aquila, L’Aquila, Italy. 4Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. 5SpacEarth Technology, Rome, Italy. giulia.dangelo@uniroma3.it

Direction of the IP shock normal in the GSE system ICME1 The 2015 St. Patrick’s day Storm GOES 15 (nT) IP shock parameters IP shock’s normal: latitude (GSE) 𝜃=68.4° IP shock’s normal longitude: (GSE) 𝜙=169.5° IP shock’s speed 𝑉 𝐼𝑃 =560 km/s IP shock’s impact point at magnetopause: 𝑋 𝑖𝑚 𝑝 𝐺𝑆𝐸 =14.2 𝑅 𝐸 𝑌 𝑖𝑚 𝑝 𝐺𝑆𝐸 =3.9 𝑅 𝐸   CF R T FAC INT X 1 0.8 10 Y 3 5 Z -0.8

The Ionospheric Response Conjugate sites EURC-DMC0 RESC-BTN0 NYA0-ZSGN   Location Station ID Owner Latitude Longitude CGLat CGLon Arctic Eureka EURC CHAIN 79.99 °N 274.10 °E 87.41 °N 342.32 °E Resolute Bay RESC 74.75 °N 265.00 °E 82.45 °N 326.10 °E Ny-Ålesund 0 NYA0 INGV 78.92 °N 11.98 °E 76.54 °N 108.79 °E Antarctica Concordia DomeC0 DMC0 75.10 °S 123.35 °E 88.02 °S 225.55 °E Baia Terranova BTN0 74.41 °S 164.10 °E -77.12 °S 274.75 °E Zhongshan ZSGN IGGCAS 69.37 °S 76.37 °E 75.59 °S 102.53 °E

The Ionospheric Response SWA SWB SWA UT Spectral Width≥200 m/s NORTH Phase Scint (SatX) SOUTH SWB SWA SWB UT UT

Remarks GOES 15 observations, when compared with a modified version of Tsyganenko and Sitnov model, are consistent with an anti-dipolarization of the magnetotail and with the rigid southward lowering of both magnetosphere tail lobes. This deformation may justify the hemispheric differences in the evolution of the ionospheric convection at high latitude. The anti-dipolarization of the magnetospheric field may justify the loss of conjugacy between EURC-DMC0, RESC-BTN0, and NYA0-ZSGN respectively. The anti-dipolarization of the magnetospheric field and the rigid lowering of the both tail lobes explains the hemispheric asymmetries in the scintillation intensity recorded by the selected polar stations at ground. The comparison between the spectral width and the phase scintillation index allows confirming the link between the GPS phase scintillation and the ionospheric plasma dynamics. Moreover, this comparison suggests that the ionospheric regions characterized by high spectral width values are more likely to be affected by scintillation. The Swarm electron density measurements, combined with the phase scintillation index lead us to speculate the cause-effect relationships between the presence of localized plasma irregularities and the scintillation.