David J. Nikolic-Paterson, Shuang Wang, Hui Yao Lan 

Slides:



Advertisements
Similar presentations
Chapter 1: Definition and classification of CKD Kidney International Supplements Volume 3, Issue 1, Pages (January 2013) DOI: /kisup
Advertisements

Volume 62, Issue 6, Pages (December 2002)
Volume 67, Issue 6, Pages (June 2005)
Volume 72, Issue 3, Pages (August 2007)
Volume 77, Issue 6, Pages (March 2010)
Volume 78, Issue 3, Pages (August 2010)
Persistent rejection of peritubular capillaries and tubules is associated with progressive interstitial fibrosis  Akira Shimizu, Kazuhiko Yamada, David.
Volume 67, Issue 6, Pages (June 2005)
Volume 56, Issue 4, Pages (October 1999)
Cell Physiol Biochem 2017;42:1945– DOI: /
Volume 82, Issue 6, Pages (September 2012)
Smad7 gene transfer inhibits peritoneal fibrosis
Volume 67, Issue 3, Pages (March 2005)
Volume 84, Issue 2, Pages (August 2013)
Macrophage heterogeneity, phenotypes, and roles in renal fibrosis
Volume 72, Issue 1, Pages (July 2007)
Volume 86, Issue 3, Pages (September 2014)
Volume 80, Issue 11, Pages (December 2011)
Volume 80, Issue 10, Pages (November 2011)
Volume 88, Issue 3, Pages (September 2015)
Volume 84, Issue 3, Pages (September 2013)
Hyperlipidemia aggravates renal disease in B6.ROP Os/+ mice
Volume 18, Issue 10, Pages (October 2010)
Kameswaran Surendran, Theodore C. Simon, Helen Liapis, John K. McGuire 
Volume 61, Issue 1, Pages (January 2002)
Burden of chronic kidney disease: North Africa
Volume 54, Issue 3, Pages (September 1998)
JAK/STAT signaling in renal diseases
Volume 70, Issue 7, Pages (October 2006)
Volume 80, Issue 10, Pages (November 2011)
Heterozygous disruption of activin receptor–like kinase 1 is associated with increased renal fibrosis in a mouse model of obstructive nephropathy  José.
Volume 84, Issue 2, Pages (August 2013)
Volume 84, Issue 5, Pages (November 2013)
Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy  Shinya Mizuno, Kunio Matsumoto, Toshikazu Nakamura 
Volume 60, Issue 2, Pages (August 2001)
Volume 70, Issue 10, Pages (November 2006)
Volume 61, Issue 6, Pages (June 2002)
Kidney tubular epithelium is restored without replacement with bone marrow–derived cells during repair after ischemic injury  Jeremy S. Duffield, Joseph.
Volume 92, Issue 3, Pages (September 2017)
Volume 63, Issue 4, Pages (April 2003)
Local macrophage proliferation in human glomerulonephritis
Volume 76, Issue 5, Pages (September 2009)
An unusual cause of acute renal failure
Volume 67, Issue 2, Pages (February 2005)
C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis  Gopala K. Rangan, Jeffrey W. Pippin, William.
Volume 75, Issue 6, Pages (March 2009)
Robert L. Chevalier, Michael S. Forbes, Barbara A. Thornhill 
Volume 82, Issue 2, Pages (July 2012)
Volume 88, Issue 6, Pages (December 2015)
Volume 80, Issue 5, Pages (September 2011)
M.-J. Wu, M.-C. Wen, Y.-T. Chiu, Y.-Y. Chiou, K.-H. Shu, M.-J. Tang 
Volume 67, Issue 6, Pages (June 2005)
Methods for guideline development
Robert L. Chevalier, Barbara A. Thornhill, Alice Y. Chang 
Volume 56, Pages S47-S50 (July 1999)
CD4+ T cells: a potential player in renal fibrosis
Volume 77, Issue 4, Pages (February 2010)
Florian E. Togel, Christof Westenfelder 
Fibrosis and renal aging
Volume 68, Issue 3, Pages (September 2005)
Current status of maintenance hemodialysis in Beijing, China
Volume 58, Issue 5, Pages (November 2000)
Volume 84, Issue 1, Pages (July 2013)
Volume 75, Issue 5, Pages (March 2009)
Volume 21, Issue 2, Pages (February 2013)
Volume 88, Issue 6, Pages (December 2015)
Volume 80, Issue 9, Pages (November 2011)
Volume 70, Issue 9, Pages (November 2006)
Volume 74, Issue 8, Pages (October 2008)
Volume 79, Issue 11, Pages (June 2011)
Presentation transcript:

Macrophages promote renal fibrosis through direct and indirect mechanisms  David J. Nikolic-Paterson, Shuang Wang, Hui Yao Lan  Kidney International Supplements  Volume 4, Issue 1, Pages 34-38 (November 2014) DOI: 10.1038/kisup.2014.7 Copyright © 2014 International Society of Nephrology Terms and Conditions

Figure 1 Evidence for macrophage-myofibropblast transition (MMT) in human fibrotic kidney disease. Confocal microscopy reveals that severe renal fibrosis in a patient with IgA nephropathy (IgAN) is associated with numerous MMT cells identified by co-expression of alpha smooth muscle action (α-SMA) (red) and CD68 (green). Such MMT cells are absent in a case of minimal change disease (MCD). A, arteriole; arrows identify α-SMA+ CD68+ double-positive MMT cells. Magnification: × 400. Kidney International Supplements 2014 4, 34-38DOI: (10.1038/kisup.2014.7) Copyright © 2014 International Society of Nephrology Terms and Conditions

Figure 2 Evidence for bone marrow-derived macrophage-myofibropblast transition (MMT) in the mouse model of unilateral ureteric obstruction (UUO). A day-7 UUO study was performed in chimeric mice with a green fluorescence protein (GFP) + bone marrow compartment. Confocal microscopy showed that the severe renal fibrosis on day-7 UUO is associated with numerous α-SMA + F4/80 + GFP + MMT cells in the obstructed kidney but not in the sham-operated kidney. An MMT cell is illustrated in the inserted picture of each panel. Magnification: × 400. Kidney International Supplements 2014 4, 34-38DOI: (10.1038/kisup.2014.7) Copyright © 2014 International Society of Nephrology Terms and Conditions

Figure 3 Two-color flow cytometry detects macrophage-myofibropblast transition (MMT) cells in wild-type mice in the unilateral ureteric obstruction (UUO) model. Two-color immunofluorescence staining show that the majority of alpha smooth muscle action (α-SMA) + myofibroblasts co-express the macrophage F4/80 antigen in a single-cell suspension of the obstructed kidney prepared by enzyme digestion. However, this is not the case in the sham-operated kidney. Kidney International Supplements 2014 4, 34-38DOI: (10.1038/kisup.2014.7) Copyright © 2014 International Society of Nephrology Terms and Conditions