3/2003 Rev 1 I.2.8 – slide 1 of 31 Session I.2.8 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.

Slides:



Advertisements
Similar presentations
3/2003 Rev 1 I.2.9 – slide 1 of 35 Session I.2.9 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Advertisements

4/2003 Rev 2 I.3.6 – slide 1 of 23 Session I.3.6 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 6Buildup and Shielding.
3/2003 Rev 1 I.2.7 – slide 1 of 35 Session I.2.7 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
4/2003 Rev 2 I.3.4 – slide 1 of 24 Session I.3.4 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 4Photon Interactions.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I.3.7 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 7Neutron Interactions Module I.3.7.
4/2003 Rev 2 I.2.4 – slide 1 of 9 Session I.2.4 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I.2.12 – slide 1 of 18 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 12Statistics.
4/2003 Rev 2 I.4.3 – slide 1 of 29 Session I.4.3 Part I Review of Fundamentals Module 4Sources of Radiation Session 3Alpha, Beta, Gamma and Neutron Sources.
3/2003 Rev 1 I.2.5 – slide 1 of 21 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 5Nuclear Stability.
4/2003 Rev 2 I.2.2 – slide 1 of 13 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 2Excitation.
3/2003 Rev 1 I.2.6 – slide 1 of 43 Session I.2.6 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Modes.
4/2003 Rev 2 I.2.3 – slide 1 of 15 Session I.2.3 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I – slide 1 of 20 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Sessions 1-2Heavy Particles Session I
3/2003 Rev 1 I.2.8 – slide 1 of 31 Session I.2.8 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.

4/2003 Rev 2 II.3.6 – slide 1 of 18 Part IIQuantities and Measurements Module 3Principles of Radiation Detection and Measurement Session 6Photographic.
3/2003 Rev 1 I.4.1 – slide 1 of 33 Part I Review of Fundamentals Module 4Sources of Radiation Session 1Terrestrial Radionuclides Module I.4.1 IAEA Post.
IAEA International Atomic Energy Agency Radioactivity - 1 Radioactive Decay Day 1 – Lecture 4.
IAEA International Atomic Energy Agency Radioactivity -2 Decay Chains and Equilibrium Day 1 – Lecture 5.
NE Introduction to Nuclear Science Spring 2012 Classroom Session 6: Rates of Nuclear Decay Transient Equilibrium Secular Equilibrium No Equilibrium.
3/2003 Rev 1 I.2.13 – slide 1 of 48 Part IReview of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 13Statistics.
Interaction of Radiation with Matter - 4
4/2003 Rev 2 II.3.1 – slide 1 of 30 Part IIQuantities and Measurements Module 3Principles of Radiation Detection and Measurement Session 1Ionization Chambers.
3/2003 Rev 1 II.2.9b – slide 1 of 40 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Part IIQuantities and.
Basic Nuclear Physics - 3
3/2003 Rev 1 I – slide 1 of 33 Session I Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection.
3/2003 Rev 1 I.3.8&10 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 8&10Neutron Activation Session.
3/2003 Rev 1 I.2.7 – slide 1 of 35 Session I.2.7 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I.4.2 – slide 1 of 20 Part I Review of Fundamentals Module 4Sources of Radiation Session 2Cosmic Radiation Module I.4.2 IAEA Post Graduate.
3/2003 Rev 1 I.3.3 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 3Beta Particles Session I.3.3 IAEA.
4/2003 Rev 2 I.2.1 – slide 1 of 29 Session I.2.1 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
4/2003 Rev 2 I.4.10 – slide 1 of 25 Session I.4.10 Part I Review of Fundamentals Module 4Sources of Radiation Session 10Linear Accelerators, Cyclotrons.
4/2003 Rev 2 I.3.6 – slide 1 of 23 Session I.3.6 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 6Buildup and Shielding.
3/2003 Rev 1 II.2.8 – slide 1 of 42 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Part IIQuantities and.
3/2003 Rev 1 I.3.8&10 – slide 1 of 23 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Session 8&10Neutron Activation Session.
4/2003 Rev 2 I.4.12 – slide 1 of 10 Session I.4.12 Part I Review of Fundamentals Module 4Sources of Radiation Session 12Filtration and Beam Quality IAEA.
4/2003 Rev 2 I.4.3 – slide 1 of 29 Session I.4.3 Part I Review of Fundamentals Module 4Sources of Radiation Session 3Alpha, Beta, Gamma and Neutron Sources.
4/2003 Rev 2 II.2.5 – slide 1 of 44 Session II.2.5 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Part IIQuantities.
3/2003 Rev 1 I.2.6 – slide 1 of 43 Session I.2.6 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Modes.
3/2003 Rev 1 I.2.12 – slide 1 of 18 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 12Statistics.
3/2003 Rev 1 II.1.2 – slide 1 of 32 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Session II.1.2 Part IIQuantities.
4/2003 Rev 2 I.4.11 – slide 1 of 21 Session I.4.11 Part I Review of Fundamentals Module 4Sources of Radiation Session 11X-Ray Production IAEA Post Graduate.
3/2003 Rev 1 II.3.4 & 13-15a – slide 1 of 31 Part IIQuantities and Measurements Module 3Principles of Radiation Detection and Measurement Session 4,Liquid.
3/2003 Rev 1 I.2.9 – slide 1 of 35 Session I.2.9 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
Intervention for Chronic and Emergency Exposure Situations Assessment and Response during Nuclear Emergency Protective Action Decision Making for Severe.
4/2003 Rev 2 I.4.4 – slide 1 of 13 Session I.4.4 Part I Review of Fundamentals Module 4Sources of Radiation Session 4Sealed and Unsealed Sources and Isotope.
3/2003 Rev 1 I.2.10 – slide 1 of 36 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Basic Mathematics.
Session II.3.7 Part II Quantities and Measurements
3/2003 Rev 1 I.2.5 – slide 1 of 21 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 5Nuclear Stability.
3/2003 Rev 1 I.2.0 – slide 1 of 12 Session I.2.0 Part I Review of Fundamentals Module 2Introduction Session 0Part I Table of Contents IAEA Post Graduate.
4/2003 Rev 2 I.2.3 – slide 1 of 15 Session I.2.3 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session.
3/2003 Rev 1 I – slide 1 of 20 Part I Review of Fundamentals Module 3Interaction of Radiation with Matter Sessions 1-2Heavy Particles Session I
3/2003 Rev 1 II.2.9a – slide 1 of 25 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Part IIQuantities and.
3/2003 Rev 1 II.1.1 – slide 1 of 30 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Session II.1.1 Part IIQuantities.
Radiometric Quantities & Interaction Coefficients
3/2003 Rev 1 II.3.5 – slide 1 of 23 IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources Session II.3.5 Part IIQuantities.
Balancing Nuclear Equations & Calculating Half-Life
Chapter 9 Nuclear Radiation
Half-Life.
Topic: Nuclear Chemistry
Lecture 4: Mathematics of Decay and Units of Radioactivity
Time it takes for 1/2 of the radioactive atoms in a sample to decay.
Balancing Nuclear Equations & Calculating Half-Life
Chapter 9 Nuclear Radiation
SERIAL TRANSFORMATION
Aim: What is a half life of an element?
Nuclear Transformations
Presentation transcript:

3/2003 Rev 1 I.2.8 – slide 1 of 31 Session I.2.8 Part I Review of Fundamentals Module 2Basic Physics and Mathematics Used in Radiation Protection Session 8Decay Chains and Equilibrium IAEA Post Graduate Educational Course Radiation Protection and Safe Use of Radiation Sources

3/2003 Rev 1 I.2.8 – slide 2 of 31 Introduction  Radioactive serial decay and equilibrium will be discussed  Students will:  learn the differences between secular and transient equilibrium  identify when no equilibrium is possible  understand how series decay works  calculate ingrowth of a decay product from a radioactive parent

3/2003 Rev 1 I.2.8 – slide 3 of 31 Content  Secular equilibrium  Transient equilibrium  Case of no equilibrium  Radioactive decay series  Ingrowth of decay product from a parent radionuclide

3/2003 Rev 1 I.2.8 – slide 4 of 31 Overview Radioactive decay chains (parent and single decay product) and equilibrium situations will be discussed

3/2003 Rev 1 I.2.8 – slide 5 of 31 Types of Radioactive Equilibrium SecularHalf-life of parent much greater (> 100 times) than that of decay product

3/2003 Rev 1 I.2.8 – slide 6 of 31 Types of Radioactive Equilibrium TransientHalf-life of parent only greater than that of decay product

3/2003 Rev 1 I.2.8 – slide 7 of Sr  90 Y  90 Zr Sample Radioactive Series Decay where 90 Sr is the parent (half-life = 28 years) and 90 Y is the decay product (half-life = 64 hours)

3/2003 Rev 1 I.2.8 – slide 8 of 31 Differential Equation for Radioactive Series Decay = Sr N Sr - Y N Y dN Y dt Parent and Single Decay Product

3/2003 Rev 1 I.2.8 – slide 9 of 31 Parent and Single Decay Product Differential Equation for Radioactive Series Decay N Y (t) = (e - t - e - t ) Sr Y Sr N Sr Y - Sr o Recall that Sr N o Sr = A o Sr which equals the initial activity of 90 Sr at time t = 0

3/2003 Rev 1 I.2.8 – slide 10 of 31 General Equation for Radioactive Series Decay Y N Y (t) = (e - t - e - t ) Sr Y Y - Sr Y Sr N Sr o Activity of 90 Sr at time t = 0 Activity of 90 Y at time t or A Y (t)

3/2003 Rev 1 I.2.8 – slide 11 of 31 Buildup of a Decay Product under Secular Equilibrium Conditions Secular Equilibrium A Y (t) = (1 - e - t ) Y A Sr

3/2003 Rev 1 I.2.8 – slide 12 of 31 Secular Equilibrium Sr N Sr = Y N Y A Sr = A Y

3/2003 Rev 1 I.2.8 – slide 13 of 31 Decay of 226 Ra to 222 Rn Secular Equilibrium A Rn (t) = A o (1 - e - t ) Rn Ra

3/2003 Rev 1 I.2.8 – slide 14 of Ra (half-life 1600 years) decays to 222 Rn (half-life 3.8 days). If initially there is 100 µCi of 226 Ra in a sample and no 222 Rn, calculate how much 222 Rn is produced: a.after 7 half-lives of 222 Rn b.at equilibrium Sample Problem 1

3/2003 Rev 1 I.2.8 – slide 15 of 31 The number of atoms of 222 Rn at time t is given by: Solution to Sample Problem = Ra N Ra - Rn N Rn dN Rn dt Solving: N Rn (t) = (1 - e - t ) Rn Ra N Ra Rn

3/2003 Rev 1 I.2.8 – slide 16 of 31 Multiplying both sides of the equation by Rn : A Rn (t) = A Ra (1 - e - t ) Rn Solution to Sample Problem = 100 * (0.992) = 99.2 µCi of 222 Rn Let t = 7 T Rn Rn t = (0.693/T Rn ) x 7 T Rn = * 7 = 4.85 Rn t = (0.693/T Rn ) x 7 T Rn = * 7 = 4.85 e = A Rn (7 half-lives) = 100 µCi * ( )

3/2003 Rev 1 I.2.8 – slide 17 of 31 Solution to Sample Problem 100 µCi µCi = 200 µCi Rn N Rn = Ra N Ra or A Rn = A Ra = 100 µCi Rn N Rn = Ra N Ra or A Rn = A Ra = 100 µCi Note that the total activity in this sample is: Rn N Rn + Ra N Ra or A Rn + A Ra = Rn N Rn + Ra N Ra or A Rn + A Ra = Now, at secular equilibrium:

3/2003 Rev 1 I.2.8 – slide 18 of 31 Transient Equilibrium D N D = D - P D P N P

3/2003 Rev 1 I.2.8 – slide 19 of 31 Transient Equilibrium A D = D - P A P D

3/2003 Rev 1 I.2.8 – slide 20 of 31 Time for Decay Product to Reach Maximum Activity Transient Equilibrium t mD = D - P ln D P

3/2003 Rev 1 I.2.8 – slide 21 of 31 Example of Transient Equilibrium 132 Te Decays to 132 I Transient Equilibrium

3/2003 Rev 1 I.2.8 – slide 22 of 31 The principle of transient equilibrium is illustrated by the Molybdenum-Technetium radioisotope generator used in nuclear medicine applications. Given initially that the generator contains 100 mCi of 99 Mo (half-life 66 hours) and no 99m Tc (half-life 6 hours) calculate the: a. time required for 99m Tc to reach its maximum activity b. activity of 99 Mo at this time, and c. activity of 99m Tc at this time Sample Problem

3/2003 Rev 1 I.2.8 – slide 23 of 31 Note that only 86% of the 99 Mo transformations produce 99m Tc. The remaining 14% bypass the isomeric state and directly produce 99 Tc Sample Problem

3/2003 Rev 1 I.2.8 – slide 24 of 31 Tc = 0.693/(6 hr) = 0.12 hr -1 Tc = 0.693/(6 hr) = 0.12 hr -1 Mo = 0.693/(66 hr) = hr -1 Mo = 0.693/(66 hr) = hr -1 Solution to Sample Problem t mTc = Tc - Mo ln Tc Mo t mTc = 0.12 – ln = 21.9 hrs a)

3/2003 Rev 1 I.2.8 – slide 25 of 31 (b) The activity of 99 Mo is given by A(t) = A o e - t = 100 mCi e (-0.011/hr * 21.9 hr) = 100 * (0.79) = 79 mCi Solution to Sample Problem

3/2003 Rev 1 I.2.8 – slide 26 of 31 c) The activity of 99m Tc at t = 21.9 hrs is given by: Solution to Sample Problem A Tc (t) = (e -(0.011)(21.9) - e -(0.12)(21.9) ) (0.12 – 0.011) (0.12)(100 mCi)(0.86) = (94.7) ( ) = 67.6 mCi of 99m Tc A Tc (t) = (e - t - e - t ) Mo Tc Tc - Mo Tc A Mo (see slide 10)

3/2003 Rev 1 I.2.8 – slide 27 of 31 Solution to Sample Problem The maximum activity of 99m Tc is achieved at 21.9 hours which is nearly 1 day.

3/2003 Rev 1 I.2.8 – slide 28 of 31 Types of Radioactive Equilibrium No EquilibriumHalf-life of parent less than that of decay product

3/2003 Rev 1 I.2.8 – slide 29 of 31 No Equilibrium

3/2003 Rev 1 I.2.8 – slide 30 of 31 Summary  Secular equilibrium was defined  Transient equilibrium was defined  Case of no equilibrium was defined  Series decay equations were developed  Decay examples were discussed  Problems in secular and transient equilibrium were solved

3/2003 Rev 1 I.2.8 – slide 31 of 31 Where to Get More Information  Cember, H., Introduction to Health Physics, 3 rd Edition, McGraw-Hill, New York (2000)  Firestone, R.B., Baglin, C.M., Frank-Chu, S.Y., Eds., Table of Isotopes (8 th Edition, 1999 update), Wiley, New York (1999)  International Atomic Energy Agency, The Safe Use of Radiation Sources, Training Course Series No. 6, IAEA, Vienna (1995)