SUSY Dark Matter in light of CDMS/XENON Results

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Sussex The WIMP of a minimal walking Technicolor Theory J. Virkajärvi Jyväskylä University, Finland with K.Kainulainen and K.Tuominen.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Neutralino Dark Matter in Light Higgs Boson Scenario Masaki Asano (ICRR, University of Tokyo) Collaborator S. Matsumoto (Toyama Univ.) M. Senami (Kyoto.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Little Higgs Model Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) KIAS-NCTS Joint Workshop High-1 2/9 – 2/15 In collaboration.
Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
Mia Schelke, Ph.D. Student The University of Stockholm, Sweden Cosmo 03.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
超对称的现状和未来探索 杨 金 民杨 金 民杨 金 民杨 金 民 中国科大 中科院理论物理所.
Supersymmetry Without Prejudice 第二部分 KITPC 2008 C.F. Berger, J. Gainer, JLH, T. Rizzo Coming soon to an ArXiv near you.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Direct and Indirect Dark Matter Detection in Models with a Well-Tempered Neutralino Eun-Kyung Park Florida State University in collaboration with H. Baer.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
NMSSM & B-meson Dileptonic Decays Jin Min Yang ITP, Beijing arXiv: Heng, Wang, Oakes, Xiong, JMY 杨 金 民杨 金 民.
Right-handed sneutrino as cold dark matter of the universe Takehiko Asaka (EPFL  Niigata University) Refs: with Ishiwata and Moroi Phys.Rev.D73:061301,2006.
Natural Solution to the Supersymmetry Electroweak Fine-Tuning Problem Tianjun Li Institute of Theoretical Physics, Chinese Academy of Sciences Yellow Mountain,
SUSY after LHC 2011 Data: A Brief Look 重庆 杨 金 民 中国科学院 理论物理研究所.
Dark Matter Expect Unexpected outside LHC Jingsheng Li.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
Overview of Supersymmetry and Dark Matter
Dark matter and hidden U(1) X (Work in progress, In collaboration with E.J. Chun & S. Scopel) Park, Jong-Chul (KIAS) August 10, 2010 Konkuk University.
CONSTRAINED MSSM AND RECENT ASTROPHYSICAL DATA Alexey Gladyshev (JINR, Dubna & ITEP, Moscow) SEMINAR AT KEK THEORY GROUP November 1, 2004.
The Search For Supersymmetry Liam Malone and Matthew French.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Phys. Lett. B646 (2007) 34, (hep-ph/ ) Non-perturbative effect on thermal relic abundance of dark matter Masato Senami (University of Tokyo, ICRR)
The Case of Light Neutralino Dark Matter
Phenomenology of Three-Loop Neutrino Masses Models
ONE-PARAMETER MODEL FOR THE SUPERWORLD
Sterile Neutrinos and WDM
Generating Neutrino Mass & Electroweak Scale Radiatively
Lecture II: Dark Matter Candidates and WIMPs
Topics in Higgs Portal Dark Matter
Dark Matter Phenomenology of the GUT-less CMSSM
Focus-Point studies at LHC
SUSY searches 11 papers completed Completely solves hierarchy problem
Dark Matter: A Mini Review
Phenomenology of Non-minimal SUSY Models
Shufang Su • U. of Arizona
LHC The Challenge Dmitri Kazakov JINR / ITEP
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Collider Phenomenology of SUSY Cosmic Connections &
NMSSM & B-meson Dileptonic Decays
Barbara Mele Sezione di Roma
Shufang Su • U. of Arizona
Higgs and SUSY at future colliders
Flavoured Dark Matter in Dark Minimal Flavour Violation
Supersymmetric Dark Matter
Baryogenesis at Electroweak scale
Testing the Standard Model and Beyond
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
CEPC-Physics Workshop
Leptophilic Dark Matter from ATIC and Pamela
Analysis of enhanced effects in MSSM from the GUT scale
Probing bino-wino coannihilation DM at the LHC
Dark Matter Explanation in Singlet Extension of MSSM
Institute of Theoretical Physics, CAS
How Heavy can Neutralino Dark Matter be?
Dark Matter Detection,Models and Constraints
Presentation transcript:

SUSY Dark Matter in light of CDMS/XENON Results Jin Min Yang Institute of Theoretical Physics, Beijing arXiv: 1006.4811, in PRD(R) arXiv: 1005.0761, in JHEP With Cao, Hikasa, Wang, Yu 2010.11.5 , Tsinghua Univ

Outline Introduction: SUSY—Dark Matter—Higgs 2 Experimental Constraints on SUSY 2.1 Collider Constraints 2.2 Dark Matter Constraints 3 Currently Allowed SUSY Parameter Space 4 Implication for LHC Higgs Search 5 Conclusion

1. Introduction SUSY Higgs Boson Dark Matter In the following I will give a very brief discussion

standard non-standard theory – D. Gross 1.1 About SUSY standard non-standard theory – D. Gross Edward Witten International Conference on String Theory, Beijing, (Aug 17, 2002)

David Gross August 17, 2002 Supersymmetry 1028ev 1012ev LHC ENERGY SRTRENGTH STRONG OF FORCE Supersymmetry WEAK UNIFICATION ELECTRO Planck Scale GRAVITY 1028ev 1012ev Present day observation LHC ENERGY

-- M. E. Peskin ITP, Beijing, Aug. 2010

SUSY Models: · · · · MSSM nMSSM Split-SUSY mSUGRA So we see exploring SUSY is very important ! Different models give different phenomenology MSSM NMSSM nMSSM Split-SUSY mSUGRA · · · · SUSY Models: MSSM SUSY nMSSM NMSSM

1.2 SUSY Dark Matter: a miracle ! a byproduct of SUSY  DM ~ 0 (a perfect WIMP ) 1 Perfect candidate for DM Naturally give correct relic density A miracle !

1.3 Higgs Bosons ---SUSY is the paradise of Higgs SM (only one Higgs boson) Will be found at LHC !

h, H, A, H SUSY (more than 5 Higgs) How many can be seen at LHC ? ---depending on parameter space Which part is chosen by nature ? ---current experimental constr.

2 Experimental Constraints on SUSY direct bounds (LEPI, LEPII, Tevatron) EW (S,T,U) Rb B-decays muon anomalous a meet all constraints at 2- level dark matter DM CDMSII/XENON      

2.1 Collider Constraints (1) Direct Bounds: LEP I LEP II Tevatron

b s (2) Precision EW Data S, T, U Rb (3) a    SUSY (3) a   SUSY  (4) B-decays and mixings b s 

Universe cools: n=nEQe-m/T 2.2 Dark Matter Constraints Relic Density (WMAP) Thermal equilibrium   ff Universe cools: n=nEQe-m/T (i) Lightest nurtralino solely composes cosmic dark matter Freeze out (ii) Relic density in 2 range (not only upper bounded) 1018 秒

CDMS-II/XENON Limits:

We do not consider Cosmic Ray Anomaly (PAMELA, ATIC, ···) as constraints on SUSY Anyway, they can be explained by pulsars

Currently Allowed SUSY Parameter Space Scan over parameter space

CDMS-II already make sense in testing SUSY! Red: CDMS-II covered region Blue: SuperCDMS(25kg)/XENON100 (6000 kg-day) Green: beyond SuperCDMS/XENON100 CDMS-II already make sense in testing SUSY!

LSP (DM) property bino-like singlino-like CDMS/XENON will push LSP more bino-like

CDMS-II push LSP (DM) more bino-like CDMS/XENON push up  value higgsino component decrease bino component increase

CDMS/XENON push up chargino (finally 2*LSP)

CDMS/XENON push up charged-Higgs

SM-like Higgs may decay to DM

How about split-SUSY ?

4 Implication for LHC MSSM-Higgs Search charged-Higgs: almost unaccessible ATLAS

neutral-Higgs (H,A) at LHC CMS

5. Conclusion (i) Current CDMS-II/XENON100 limits can exclude some parameter space which survive the constraints from dark matter relic density and various collider experiments: push up charged-Higgs, chargino push LSP more bino-like (ii) Future SuperCDMS/XENON100 (6000 kg-days exposure) will significantly tighten the parameter space in case of null results (iii) Currently, in allowed parameter space: charged Higgs is hardly accessible at LHC neutral non-SM Higgs bosons may be accessible in some allowed region characterized by a large mu Future SuperCDMS/XENON100 limits will further push away non-SM Higgs bosons at the LHC (iv) Interplay of LHC and CDMS/XENON: a good test for SUSY ! Thanks !