Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/0605277.

Slides:



Advertisements
Similar presentations
Steve B. Howell (NOAO) Don Hoard (Spitzer Science Center Bob Stencel (U. of Denver)
Advertisements

Debris disks with CCAT Jane Greaves: ~2012??
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Astromineralogy of Protoplanetary Disks (and other astrophysical objects) Steve Desch Melissa Morris Arizona State University.
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Resonant Structures due to Planets Mark Wyatt UK Astronomy Technology Centre Royal Observatory Edinburgh.
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
ExoZodical Emission and ExoPlanets: Ground-based Challenges C. Beichman (NASA Exoplanet Science Institute) With lots of help from A. Tanner (Georgia State),
Dust Growth in Transitional Disks Paola Pinilla PhD student Heidelberg University ZAH/ITA 1st ITA-MPIA/Heidelberg-IPAG Colloquium "Signs of planetary formation.
Circumstellar disks: what can we learn from ALMA? March ARC meeting, CSL.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Subaru/Gemini MIR Observations of Warm Debris Disks Hideaki Fujiwara (Subaru Telescope) 1 Collaborators: T. Onaka (U. Tokyo), D. Ishihara (Nagoya U.),
Jérémy Lebreton EXOZODI Kick-off Meeting
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
Origin and evolution of dust in galaxies Can we account for the dust in galaxies by stellar sources? Mikako Matsuura Origin’s fellow, Institute of Origins,
JWST Science 4-chart version follows. End of the dark ages: first light and reionization What are the first galaxies? When did reionization occur? –Once.
Signatures of Planets in Debris Disks A. Moro-Martin 1,2,3, S. Wolf 2, R. Malhotra 4 & G. Rieke 1 1. Steward Observatory (University of Arizona); 2. MPIA.
Are Planets in Unresolved Candidates of Debris Disks Stars? R. de la Reza (1), C. Chavero (1), C.A.O. Torres (2) & E. Jilinski (1) ( 1) Observatorio Nacional.
Are Planets in Unresolved Candidates of Debris disks stars? R. de la Reza (1), C. Chavero (1), C.A.O. Torres (2) & E. Jilinski (1) (1) Observatorio Nacional.
Dust Dynamics in Debris Gaseous Disks Taku Takeuchi (Kobe Univ., Japan) 1.Dynamics of Dust - gas drag - radiation 2. Estimate of Gas Mass 3. Dust Disk.
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
High-resolution Imaging of Debris Disks Jane Greaves St Andrews University, Scotland.
Detecting the signature of planets at millimeter wavelengths F. Ramos-Stierle, D.H. Hughes, E. L. Chapin (INAOE, Mexico ), G.A. Blake ???
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
Study of Planet forming Systems Orbiting Intermediate-mass Stars Sweta Shah Ithaca College Advisor: Dr. Luke Keller In collaboration with the NASA Spitzer.
Report from the Oort Cloud Simulations of the Formation of the Comet Reservoir Luke Dones Hal Levison Paul Weissman Martin Duncan.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
+ Current efforts for modeling exozodiacal disks Jean-Charles Augereau & Olivier Absil LAOG, Grenoble, France & U. Liège, Belgium Barcelona, September.
« Debris » discs A crash course in numerical methods Philippe Thébault Paris Observatory/Stockholm Observatory.
Placing our Solar System in Context Results from the FEPS Spitzer Legacy Science Program Michael R. Meyer (U. of Arizona, PI)
A new class of warm debris disks? Rachel Smith, Institute for Astronomy; Mark Wyatt, Abstract.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
How Unique Are Nearby Debris Disks? Alycia Weinberger (DTM/CIW)
Dust Envelopes around Oxygen-rich AGB stars Kyung-Won Suh Dept. of Astronomy & Space Science Chungbuk National University, Korea
Is there evidence of planets in debris disks? Mark Wyatt Institute of Astronomy University of Cambridge La planètmania frappe les astronomes Kalas, P.
Debris Belts Around Vega 0 Topic: Exoplanets Concepts: Infrared observations, debris disks, exoplanet detection, planetary systems Missions: Spitzer, Herschel.
Infrared Signatures of Planetary Systems Amaya Moro-Martin Department of Astrophysical Sciences, Princeton University.
Modeling Planetary Systems Around Sun-like Stars Paper: Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like Stars,
The Origin of the Solar System. In the beginning, we started out looking like this, just a huge cloud of gas in space….
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Debris Disks and the Formation and Evolution of Planetary Systems…
Spitzer Constraints on Circumstellar Disk Evolution and Terrestrial Planet Formation Thayne Currie (CfA) Collaborators: Scott Kenyon (CfA), George Rieke.
The PSI Planet-building Code: Multi-zone, Multi-use S. J. Weidenschilling PSI Retreat August 20, 2007.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Astronomy 340 Fall December 2007 Class #29.
Placing Our Solar System in Context with the Spitzer Space Telescope Michael R. Meyer Steward Observatory, The University of Arizona D. Backman (NASA-Ames,
Searching for extra-solar planets in Infrared J. Serena Kim Steward Observatory, Univ. of Arizona In collaboration with FEPS Spitzer legacy team (
The Legacy of Beta Pictoris
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
A Spitzer Survey of Dusty Disks in Scorpius-Centaurus Christine H. Chen (STScI) M. Bitner (STScI), E. Mamajek (Rochester), Marc Pecaut (Rochester), K.
Ge/Ay133 Can we study extrasolar Kuiper Belts?  Pic, A5V star AU Mic, M1Ve star.
The Formation & Evolution of Planetary Systems: Placing Our Solar System in Context Michael R. Meyer (Steward Observatory, The University of Arizona, P.I.)
Submillimeter Observations of Debris Disks Wayne Holland UK Astronomy Technology Centre, Royal Observatory Edinburgh With Jane Greaves, Mark Wyatt, Bill.
Placing our Solar System in Context Latest Results from the FEPS Spitzer Legacy Science Program D. Soderblom (STScI), & FEPS.
Spitzer Constraints on Primordial and Debris Disk Evolution John Carpenter on behalf of the FEPS collaboration D. Backman (NASA-Ames) S. Beckwith (STScI)
NIR, MIR, & FIR.  Near-infrared observations have been made from ground based observatories since the 1960's  Mid and far-infrared observations can.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
A Planet’s Rocky Road to Success: Spitzer Observations of Debris Disks G. H. Rieke, for the MIPS team major contributors are Chas Beichman, Geoff Bryden,
Circumstellar Disks at 5-20 Myr: Observations of the Sco-Cen OB Association Marty Bitner.
Terrestrial Planet Bombardment & Habitability Jane Greaves St Andrews, Scotland.
Astromineralogy of Protoplanetary Disks (and other astrophysical objects) Steve Desch Melissa Morris Arizona State University.
Image of the day.
Extended debris discs around nearby, Sun-like stars as a probe of disc-planet interactions Astronomical Society of Australia ASM 5th July 2016 Dr. Jonty.
Debris Disk Studies with CCAT
Gas! Very few debris disks have detected gas, and it is generally only found around the youngest systems. So why should we consider gas here?
Dynamical trapping (pile-up) of grains near the sublimation radius
Identifying the Key Factors in the Planet Formation Process
Plasma Poynting-Roberson Effect on Fluffy Dust Aggregate
Presentation transcript:

Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/

Mid- to Far-Infrared Spectra of Dust Debris Around Main Sequence Stars IRAS observations discovered more than 100 main sequence stars with unresolved excess and grain temperatures (T gr = 50 – 125 K), similar to the Kuiper Belt in our Solar System, and fractional infrared luminosities (L IR /L * = – ) Dust grain lifetimes are shorter than the ages of the systems suggesting that the material is replenished from a reservoir such as collisions between parent bodies or sublimation of comets. These objects typically have F (10 m) < 1 Jy, making the majority of systems too faint to be studied spectroscopically from the ground. IRS 5.5 – 35 m spectroscopy of 59 main sequence stars with IRAS 60 m excess. (Observations of the first 19 objects observed are published in Jura et al. 2004)

Single Temperature Black Body Fits SED modeling suggests that the dust is located in a thin ring which can be modeled assuming a single temperature distribution

Are Circumstellar Dust Grains Icy? Sublimation temperature of water in a vacuum is T sub = 150 K. The grain temperatures inferred from black body fits to the infrared excess peak at 110 – 130 K Sublimation lifetimes are a sensitive function of grain temperature. For example, dust grains with a = 3.5 micron and T gr = 70 K, have a lifetime of Gyr (!) while grains with a = 16 m and T gr = 160 K have a lifetime of 7.4 minutes.

Observed Decay of Fractional Infrared Luminosity in Debris Disks Sample The upper envelope of the relation between fractional infrared luminosity and age can be fit with a 1/t power law. The 1/t 2 power law does not produce a bad fit (only η Crv is inconsistent). The scaling factor for our fit constrains (L IR /L * ) o t o =0.4 Myr or (L IR /L * ) o t o 2 =60 Myr 2

Collisional Cascades in Planetesimal Disks In a minimum mass solar nebula, 1000 – 3000 km-sized bodies are expected to grow on timescales, t P = 15 – 20 Myr (D/30 AU) 3 (Kenyon & Bromley 2004) If debris disks are self-stirred by forming planets and if dust is generated in collisional cascades, then an outward propagating ring of dust emission should be observed.

Silicate Emission Features Predominantly associated with intermediate-age disks with ages <50 Myr 80% of the systems observed may possess crystalline silicates Warm Dust Component (T gr = 290 K – 600 K): silicate emission features that are well-fit using large grains (radii above the blow- out limit) Cool Dust Component T gr = 80 K –200 K): single temperature black bodies (required to fit the remaining continuum Multiple parent body belts may exist around these objects

HR 7012, η Tel, HD , and η Crv

Conclusions 1.The majority of observed debris disks do not possess spectral features, suggesting that their grains are too cool and/or too large (a > 10 μm) to produce spectral features. Detailed modeling of objects with spectral features requires the presence of large, warm, amorphous silicates with T gr = 290 – 600 K, in addition to cool black bodies with T gr = 80 – 200 K, and the presence of crystalline silicate mass ratios 0-76%. 2.The IRS spectra of debris disks (without spectral features) are generally better fit using a single temperature black body than with a uniform disk. Stellar radiation pressure (in collisionally dominated systems), sublimation if the grains are icy, gas drag, and/or the presence of a perturbing body may contribute to the presence of inner holes in these disks. 3.The peak in the estimated black body grain temperatures T gr = 110 – 120K suggests that sublimation of icy grains may produce the central clearings observed. 4.Since parent body masses typically are less than the mass of the Earth, it appears that planet formation efficiently consumes most of the mass of the primordial disk.