Structure & Evolution of Protoplanetary Disks: Merging 3D Radiation Transfer & Hydrodynamics Kenneth Wood St Andrews.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Accretion and Variability in T Tauri Disks James Muzerolle.
The formation of stars and planets Day 3, Topic 3: Irradiated protoplanetary disks Lecture by: C.P. Dullemond.
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Protostellar/planetary disk observations (and what they might imply) Lee Hartmann University of Michigan.
Stockholm Observatory GENIE - workshop: Leiden, 3-6 June 2002 page 1 T Tauri and Debris Disks Rene´ Liseau Stockholm Observatory, Sweden
Accretion Processes in Star Formation Lee Hartmann Cambridge Astrophysics Series, 32 Cambridge University Press (also from Nuria Calvet talks (2004) (continued)
Protoplanetary Disks: The Initial Conditions of Planet Formation Eric Mamajek University of Rochester, Dept. of Physics & Astronomy Astrobio 2010 – Santiago.
HD An Evolutionary Link Between Protoplanetary Disks and Debris Disks.
Exploring Brown Dwarf Origins Ray Jayawardhana (University of Michigan -> University of Toronto) Subhanjoy Mohanty, Gibor Basri, Beate Stelzer, David Ardila,
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Planet Formation Topic: Disk thermal structure Lecture by: C.P. Dullemond.
Ralf Siebenmorgen Köln 2012 ISM dust model Monte Carlo dust radiative transfer Proto-planetary disks: ring-like structures PAH destruction in proto-planetary.
Accretion Disks Prof. Hannah Jang-Condell. Accretion Disks Galaxy: M81 Protoplanetary Disk: AB Aurigae Neutron Star (artists conception) (Giovanni Benintende)(M.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Star Formation Why is the sunset red? The stuff between the stars
Evolution of Gas in Disks Joan Najita National Optical Astronomy Observatory Steve Strom John Carr Al Glassgold.
European Southern Observatory
High-contrast imaging with AO Claire Max with help of Bruce Macintosh GSMT Science Working Group December 2002.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Dust particles and their spectra. Review Ge/Ay 132 Final report Ivan Grudinin.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Study of Planet forming Systems Orbiting Intermediate-mass Stars Sweta Shah Ithaca College Advisor: Dr. Luke Keller In collaboration with the NASA Spitzer.
Excesos IR F   Discos “flared ”
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
The Influence of Planets on Disk Observations (and the influence of disks on planet observations) Geoff Bryden (JPL) Doug Lin (UCSC) Hal Yorke (JPL)
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Nov PALM 3000 Requirements Review Imaging of Protoplanetary and Debris Disks Karl Stapelfeldt Jet Propulsion Laboratory.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
여 아란 Long-lived transition disk systems.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
Modeling Disks of sgB[e] Stars Jon E. Bjorkman Ritter Observatory.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Monte Carlo Radiation Transfer in Circumstellar Disks Jon E. Bjorkman Ritter Observatory.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Figure 1: Coronagraphic polarimetry of GM Aur comparing polarimetry results without (top) and with (bottom) matched PSF-subtraction. Without subtraction.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
Kenneth Wood St Andrews
( 1: Kobe University, 2: Nagoya University, 3: NAOJ) ☆ Abstract ☆ We obtained a high spatial resolution (FWHM ~ 0.1”) near-infrared image of XZ Tau, a.
Primordial Disks: From Protostar to Protoplanet Jon E. Bjorkman Ritter Observatory.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Protoplanetary disk evolution and clearing Paola D’Alessio (CRYA) J. Muzerolle (Steward) C. Briceno (CIDA) A. Sicilia-Aguilar (MPI) L. Adame (UNAM) IRS.
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
Monte Carlo Photoionization Simulations of Diffuse Ionized Gas Kenneth Wood University of St Andrews In collaboration with John Mathis, Barbara Ercolano,
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Massive planets in FU Orionis objects Giuseppe Lodato Institute of Astronomy, Cambridge In collaboration with Cathie Clarke (IoA)
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Recent Developments.
Planet and Gaps in the disk
The Interstellar Medium (ISM)
Star and Planet Formation
Young planetary systems
Some considerations on disk models
Presentation transcript:

Structure & Evolution of Protoplanetary Disks: Merging 3D Radiation Transfer & Hydrodynamics Kenneth Wood St Andrews

Data:Imaging polarimetry Photometric monitoring Scattered light images Spectral energy distributions (SEDs) Theory:Dynamical models of star formation: Collapsing clouds, jets, accretion disks, debris disks, & planet formation RT Models:3D Monte Carlo techniques DataTheory Radiation Transfer Models & Observational Signatures

Friends & Collaborators RT Models & Dust Theory:Barbara Whitney, Jon Bjorkman, Mike Wolff Dynamical Models:Ken Rice, Ian Bonnell, Phil Armitage, Matthew Bate, Scott Kenyon, Adam Frank Observations:Charlie Lada, Ed Churchwell, Anneila Sargent, Glenn Schneider, Angela Cotera, Debbie Padgett, Keivan Stassun

Monte Carlo Capabilities 3D geometry & illumination Incorporate MHD density & velocity grids Scattered light images (optical & infrared) Radiative equilibrium dust temperatures SEDs & thermal imaging (mid-IR, sub-mm)

Star Formation Theory Class 0Class IClass II

Star Formation: Observations ( m) F Bourke 2001 Padgett et al Krist et al BHR71TW HydraeIRAS III

Near-IR HST Images

Disks, Disks, Disks…

T Tauri Accretion Disks: Images Disk density: hydrostatic flared disk: h / r = c s (r) / (r) Shakara & Sunyaev (1973), Lynden-Bell & Pringle (1974) Direct starlight 10,000 brighter than scattered light from disk Best detected when star occulted by edge-on flaring disk Whitney & Hartmann 1992 i = 25i = 75i = AU

T Tauri Accretion Disks: SEDs Pole-on:Large IR excess Edge-on: Double peaked SED:scattered light + thermal Wood et al. 2002

Star Formation in Taurus © Steve Kohle & Till Credner, AlltheSky.com

L1551 Region Whitney, Gomez, & Kenyon (Mt Hopkins, 48) Red = [S II] White = Visual L1551 IRS5 HL Tau XZ Tau HH 30 HH 30 IRS 1 = 8400AU

HH 30 IRS Accretion Disk Burrows et al HST WFPC2: Green:F555W (V Band) Red:F617N (H, S[II]) Scattered light models: Assume ISM dust opacity Image morphology: disk geometry, inclination Width of dust lane: optical depth, disk mass Bacciotti et al. 1999

HH 30 IRS: Disk Geometry HST WFPC2 Model Hydrostatic flared disk, i = 84 Dust + gas suspended above midplane Consistent with T(r), (r) for irradiated disks (DAlessio et al. 1999)

Multiwavelength Models ISM Dust:Opacity decreases by 10 from V to K Dust lane width decreases into IR Very compact nebulosity at K Wood et al V (0.55 m)I (0.85 m)K (2.25 m)

Cotera et al V (0.55 m) I (0.85 m) K (2.25 m) NICMOS: Wide dust lane at K Circumstellar dust is GRAYER than ISM dust Grain Growth in disk

HH 30 IRS: SED Models Model:Geometry from HST images; Heating: starlight + accretion Model HST images and SED: Determine dust size distribution Find:Grayer opacity Optical opacity < ISM Larger disk mass ( ~ M) M d ~ 2 * M Wood et al. 2002

HH 30 IRS: Grain Growth ISM HH 30 IRS Dust Size Distribution: Power law + exponential decay Grain Sizes in excess of 50 m Grayer opacity, Sub-mm slope ~ 1/ Beckwith & Sargent (1991): sub-mm continuum SEDs: ~ 1/

HH 30 IRS: Image Variability

Magnetic Accretion in HH 30 IRS BStellar B-field not aligned with rotation axis Truncates disk, accretion along field lines Hot Spots on star at magnetic poles UV excess, photometric modulation B Ghosh & Lamb1979 Shu et al. 1994

Magnetic Accretion in HH 30 IRS Wood & Whitney 1998

Magnetic Accretion in HH 30 IRS T * =3500K; T s =10000K; A ~ 6% Asymmetric brightening; V ~ 1.5m Photometric centroid shift: ~ 0.5 Wood & Whitney 1998 Stapelfeldt et al. 1999

HH 30 IRS: Photometry V ~ 1.5mag, T ~ days: Typical of CTTs, accretion hot spots Variability all due to scattered light Wood et al. 2000

GM Aur: Disk/Planet Interaction? NICMOS coronagraph Scattered light modeling: M disk ~ 0.04 M ; R disk ~ 300 AU; i ~ 50 Schneider et al AU

GM Aur: Disk/Planet Interaction? No near-IR excess SED model requires 4AU gap: planet? Lin & Papaloizou; Seyer & Clarke; Nelson, etc

GM Aur: Disk/Planet Interaction? 3D SPH calculation from Ken Rice Planet at 2.5 AU clears disk out to 4AU Rice et al. 2002

GM Aur: Disk/Planet Interaction? 3D SPH calculation from Ken Rice Planet at 2.5 AU clears disk out to 4AU Rice et al. 2002

GM Aur: Disk/Planet Interaction? 3D SPH density grid into Monte Carlo code SIRTF SED can discriminate planet mass Centroid shifting ~ 0.1mas: Keck, SIM? Rice et al. 2002

Disk Evolution Lada et al Trapezium Cluster IR-EXCESS = DISKS Cluster age ~ 1.5Myr Disk Frequency: 80%

Disk Lifetimes Haisch et al CLUSTER SURVEYS: Disk frequency declines with cluster age Disk Lifetime: ~ 6Myr

Disk Evolution Disk structure does not change Disk mass decreases homologously Mass = mass of dust contributing to SED What M d can near-IR surveys detect? Observables: SEDs, colors Current evidence for disk mass evolution?

SED Evolution d = 500pc; M < M d < M SIRTF 5, 500secs Wood et al. 2002

Color Evolution Wood et al. 2001

Observing Disk Evolution JHKL surveys: disk frequency & lifetime JHKL surveys: detect M d > M Far-IR & (sub)mm: disk mass evolution Mid-IR (10 m & 25 m): disk mass evolution

Taurus-Auriga Sources Gap in K-N distribution: transition from disks to no disks Kenyon & Hartmann 1995 * = I + = II ( = III

Disk Masses in Taurus-Auriga Evolution models: disk clearing rapid for M d < M Wood et al = M 2 = M 3 = M etc

Space Infrared Telescope SIRTF: launch in January 2003 Lots of data: 6 Legacy programs Infrared spectra for 3 m < < 160 m Study disks: environments and ages Website with grid of models

Feedback in Star Formation HH 30 IRS, GM Aur: Signatures of magnetic accretion & SPH models Bigger Goal: Combine RT and hydro simulations Temperature, radiation pressure & ionization structure

Disk Temperature Structure Stellar photons absorbed at ~ 4 h(r) above midplane Iterate with dynamics Self-consistent disk structure 6 AU20 AU300 AU T 1/5

Summary & Future Research Disk Structure & Variability: HH 30, GM Aur Model data with analytic density structures Now testing hydro simulations SIRTF: characterize large numbers of disks Goal: merge radiation transfer & hydro

Monte Carlo Photoionization T * = K Q(H 0 ) = s -1 n(H) = 100 cm -3 Calculate 3D ionization structure Study percolation of ionizing photons in fractal ISM

Stromgren Volume in a Dickey-Lockman Disk 2 Kpc n(H 0 )Ionization fraction f ~ Q(H 0 ) = s -1 : Escape fraction = 22% Ionization of HVCs, Magellanic Stream, IGM…

3D Stromgren Volumes n(H 0 ) (before)Ionization fractionn(H 0 ) (after) Clumpy density; 2 sources with Q(H 0 ) = s -1 3D ionization structure, shadow regions