Control of Eukaryotic Genes

Slides:



Advertisements
Similar presentations
Control of Eukaryotic Genes
Advertisements

AP Biology Control of Eukaryotic Genes Chapter 20.
Control of Eukaryotic Genes
Introns and Exons DNA is interrupted by short sequences that are not in the final mRNA Called introns Exons = RNA kept in the final sequence.
Genetics Control of Eukaryotic Genes Genetics The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes.
Gene Regulation Gene regulation in bacteria Cells vary amount of specific enzymes by regulating gene transcription – turn genes on or turn genes off.
AP Biology Control of Eukaryotic Genes.
AP Biology Control of Eukaryotic Genes. AP Biology The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate.
D O N OW : Review: how can you distinguish between pro/eukaryotes? Structurally? Environmentally? Both types of organisms seek efficiency, so genes often.
AP Biology Control of Eukaryotic Genes.
Prokaryotes and Eukaryotes
Evolution of gene regulation
Control of Eukaryotic Genome
AP Biology Control of Eukaryotic Genes.
AP Biology Lecture #35 Gene Regulation Positive gene control occurs when an activator molecule interacts directly with the genome to switch transcription.
3B2: Gene Expression Draw 5 boxes on your paper.
AP Biology Control of Prokaryotic (Bacterial) Genes.
Gene Regulation Bacterial metabolism Need to respond to changes – have enough of a product, stop production waste of energy stop production.
Control of Eukaryotic Genes (Ch. 19) The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to.
Control of Eukaryotic Genes
Control of Eukaryotic Genes
CH. 18 Regulation of gene expression
Gene Control Eukaryotes vs Prokaryotes
Ch 18 Pt B: Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Gene Regulation Ability of an organisms to control which genes are present in response to the environment.
Gene Expression.
Eukaryotic Gene Expression
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Eukaryote Regulation and Gene Expression
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Epigenetics Study of the modifications to genes which do not involve changing the underlying DNA
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Chp.19: Eukaryotic Gene Regulation Notes Please Print!
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Control of Eukaryotic Genes
Presentation transcript:

Control of Eukaryotic Genes 2007-2008

The BIG Questions… How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different, specialized functions? clip

Evolution of gene regulation Eukaryotes regulate body as a whole growth & development long term processes specialization turn on & off large number of genes must coordinate the body as a whole rather than serve the needs of individual cells Specialization each cell of a multicellular eukaryote expresses only a small fraction of its genes Development different genes needed at different points in life cycle of an organism afterwards need to be turned off permanently Continually responding to organism’s needs homeostasis cells of multicellular organisms must continually turn certain genes on & off in response to signals from their external & internal environment

Points of control The control of gene expression can occur at any step in the pathway from gene to functional protein

1. DNA packing H E Degree of packing regulates transcription tightly wrapped around histones no transcription genes turned off heterochromatin darker DNA (H) = tightly packed euchromatin lighter DNA (E) = loosely packed H E

1a. DNA methylation Methylation of DNA blocks transcription factors  genes turned off attachment of methyl groups (–CH3) to cytosine C = cytosine nearly permanent inactivation of genes ex. inactivated mammalian X chromosome = Barr body

2. Transcription initiation enhancer distant control sequences on DNA binding of activator proteins “enhanced” rate (high level) of transcription

Model for Enhancer action Enhancer DNA sequences distant control sequences Activator proteins bind to enhancer sequence & stimulates transcription Silencer proteins bind to enhancer sequence & block gene transcription Much of molecular biology research is trying to understand this: the regulation of transcription. Silencer proteins are, in essence, blocking the positive effect of activator proteins, preventing high level of transcription. Turning on Gene movie

Transcription complex Activator Proteins • regulatory proteins bind to DNA at distant enhancer sites • increase the rate of transcription Enhancer Sites regulatory sites on DNA distant from gene Enhancer Activator Activator Activator Coactivator B F E RNA polymerase II A TFIID H Coding region T A T A Core promoter and initiation complex Initiation Complex at Promoter Site binding site of RNA polymerase

3. Post-transcriptional control Alternative RNA splicing variable processing of exons creates a family of proteins Splicing clip

4. Regulation of mRNA degradation Life span of mRNA determines amount of protein synthesis mRNA can last from hours to weeks RNA processing movie

RNA interference Small interfering RNAs (siRNA) short segments of RNA (21-28 bases) bind to mRNA create sections of double-stranded mRNA “death” tag for mRNA triggers degradation of mRNA cause gene “silencing” post-transcriptional control turns off gene = no protein produced siRNA

5. Control of translation Block initiation of translation stage regulatory proteins attach to 5' end of mRNA prevent attachment of ribosomal subunits & initiator tRNA block translation

6-7. Protein processing & degradation folding, cleaving, adding sugar groups, targeting for transport Protein degradation proteasome degradation clip The cell limits the lifetimes of normal proteins by selective degradation. Many proteins, such as the cyclins involved in regulating the cell cycle, must be relatively short-lived.

7 Gene Regulation 5 6 2 1 4 3

Gene Regulation 7 5 6 2 1 4 3 protein degradation 1 & 2. transcription - DNA packing - transcription factors 3 & 4. post-transcription - alternative splicing - breakdown by siRNA 5. translation - block start of translation 6 & 7. post-translation - protein processing - protein degradation 5 6 initiation of translation protein processing 2 1 initiation of transcription mRNA protection mRNA splicing 4 3