13.1 Theoretical Probability

Slides:



Advertisements
Similar presentations
Discrete Random Variables To understand what we mean by a discrete random variable To understand that the total sample space adds up to 1 To understand.
Advertisements

Lecture 18 Dr. MUMTAZ AHMED MTH 161: Introduction To Statistics.
Probability Probability Principles of EngineeringTM
Discrete Distributions
Random Variables & Probability Distributions The probability of someone laughing at you is proportional to the stupidity of your actions.
Lecture Discrete Probability. 5.2 Recap Sample space: space of all possible outcomes. Event: subset of of S. p(s) : probability of element s of.
Quit Introduction Cards Combining Probabilities.
1 Press Ctrl-A ©G Dear2009 – Not to be sold/Free to use Tree Diagrams Stage 6 - Year 12 General Mathematic (HSC)
Section 2 Union, Intersection, and Complement of Events, Odds
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Chapter 5 Probability Distributions. E.g., X is the number of heads obtained in 3 tosses of a coin. [X=0] = {TTT} [X=1] = {HTT, THT, TTH} [X=2] = {HHT,
Probability Probability Principles of EngineeringTM
UNDERSTANDING INDEPENDENT EVENTS Adapted from Walch Education.
Bell Work: Collect like terms: x + y – 1 – x + y + 1.
Introduction In probability, events are either dependent or independent. Two events are independent if the occurrence or non-occurrence of one event has.
14/6/1435 lecture 10 Lecture 9. The probability distribution for the discrete variable Satify the following conditions P(x)>= 0 for all x.
S.CP.A.1 Probability Basics. Probability - The chance of an event occurring Experiment: Outcome: Sample Space: Event: The process of measuring or observing.
Introductory Statistics
Section 10.1 Introduction to Probability. Probability Probability is the overall likelihood that an event can occur. A trial is a systematic opportunity.
Probability The calculated likelihood that a given event will occur
Lecture 1 Sec
UNIT 6 – PROBABILITY BASIC PROBABILITY. WARM UP Look through your notes to answer the following questions Define Sample Set and describe the sample set.
Copyright © Cengage Learning. All rights reserved. 8.6 Probability.
Chapter 3 Probability Larson/Farber 4th ed. Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule.
Section 2 Union, Intersection, and Complement of Events, Odds
Binomial Distribution
Probability Distributions
Section 2.8 Probability and Odds Objectives: Find the probability of an event Find the odds of an event.
12.1/12.2 Probability Quick Vocab: Random experiment: “random” act, no way of knowing ahead of time Outcome: results of a random experiment Event: a.
Discrete Math Section 16.3 Use the Binomial Probability theorem to find the probability of a given outcome on repeated independent trials. Flip a coin.
Math 145 September 18, Terminologies in Probability  Experiment – Any process that produces an outcome that cannot be predicted with certainty.
10.1 Introduction to Probability Objective: Find the theoretical probability of an event. Apply the Fundamental Counting Principle. Standard: D.
No Warm-Up today. You have a Quiz Clear your desk of everything but a calculator and something to write with.
9.3 Experimental Probability. 9.3 Ten students each have a penny. If student 1 tosses the penny, what is the probability that it will land on heads? If.
Warm Up 1. Gretchen is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks.
Warm Up 1. Ingrid is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks to.
Math 1320 Chapter 7: Probability 7.1 Sample Spaces and Events.
Lesson 10: Using Simulation to Estimate a Probability Simulation is a procedure that will allow you to answer questions about real problems by running.
Section 5.1 Day 2.
Terminologies in Probability
Random Variables.
AGENDA: Get textbook Daily Grade # minutes
WDYE? 2.3: Designing a Fair Game
Discrete and Continuous Random Variables
Math 145 September 25, 2006.
Warm Up 1. Gretchen is making dinner. She has tofu, chicken and beef for an entrée, and French fries, salad and corn for a side. If Ingrid has 6 drinks.
Unit 1: Probability and Statistics
Introduction In probability, events are either dependent or independent. Two events are independent if the occurrence or non-occurrence of one event has.
Chapter 9 Section 1 Probability Review.
Warm Up Which of the following are combinations?
Unit 1: Probability and Statistics
Terminologies in Probability
Lesson 10.1 Sample Spaces and Probability
Statistical Inference for Managers
Terminologies in Probability
King Saud University Women Students
Terminologies in Probability
Terminologies in Probability
Probability.
Discrete & Continuous Random Variables
©G Dear 2009 – Not to be sold/Free to use
Probability Probability Principles of EngineeringTM
Pascal’s Triangle By Marisa Eastwood.
Math 145 October 3, 2006.
Math 145 June 26, 2007.
Terminologies in Probability
6.2 Probability Models.
Math 145 February 12, 2008.
Terminologies in Probability
Presentation transcript:

13.1 Theoretical Probability Objectives: List or describe the sample space of an experiment. Find the theoretical probability of a favorable outcome. Standard Addressed: 2.7.11 D: Use theoretical probability distributions to make judgments about the likelihood of various outcomes in uncertain situations.

The overall likelihood, or probability, of an event can be discovered by observing the results of a large number of repetitions of the situation in which the event may occur. Outcomes are random if all possible outcomes are equally likely. The sum of the probabilities is 1.

Terminology: Definition/Example : Trial: a systematic opportunity for an event to occur rolling a # cube Experiment: 1 or more trials rolling a # cube 10 times Sample Space: the set of all possible outcomes 1, 2, 3, 4, 5, 6 of an event Event: an individual outcome rolling a 3 or any specified combination of outcome rolling a 3 or rolling a 5

Ex. 1a.

Ex. 1b. Find the sample space for the experiment of tossing a coin 3 times. 1st toss 2nd toss 3rd toss H T

Ex. 2

Theoretical Probability: is based on the assumption that all outcomes in the sample space occur randomly. If all outcomes in a sample space are equally likely, then the theoretical probability of event A, denoted P(A), is defined by: P(A) = ___number of outcomes in event A___ number of outcomes in the sample space

Ex. 3

Ex. 4

Ex. 5a. Find the probability of randomly selecting a red disk in one draw from a container that contains 2 red disks, 4 blue disks, and 3 yellow disks. 2/9 = 22.2%

Ex. 5b. Find the probability of randomly selecting a blue disk in one draw from a container that contains 2 red disks, 4 blue disks, and 3 yellow disks. 4/9 = 44.4%

Ex. 6 Find the probability of randomly selecting an orange marble in one draw from a jar containing 8 blue marbles, 5 red marbles, and 2 orange marbles. 2/15 = 13.3%

Ex. 7 Blade logs his electronic mail once during the time interval from 1 to 2 p.m. Assuming that all times are equally likely, find the probability that he will log on during each time interval. a). from 1:30 p.m. to 1:40 p.m. 10/60 = 1/6 = 16.6% b). from 1:30 p.m. to 1:35 p.m. 5/60 = 1/12 = 8.3%

a). 8:04 a.m. 1/5 = 20% b). 8:02 a.m. 3/5 = 60% c). 8:01 a.m. Ex. 8 A bus arrives at Jason’s house anytime from 8 to 8:05 a.m. If all times are equally likely, find the probability that Jason will catch the bus if he begins waiting at the given time. a). 8:04 a.m. 1/5 = 20% b). 8:02 a.m. 3/5 = 60% c). 8:01 a.m. 4/5 = 80% d). 8:03 a.m. 2/5 = 40%