Chapter 13: Touch Touch: The skin-based receptor system. The entire surface of the body on which there is living tissue (skin) is a potential receptive.

Slides:



Advertisements
Similar presentations
Copyright © 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Neuroscience: Exploring the Brain, 3e Chapter 12: The Somatic Sensory System.
Advertisements

The Reflex Arc Reflexes are an automatic and rapid response to a particular stimulation If the command centre for the reflex is located in the brain.
Senses Aristotle: classical “five senses”: Sight Hearing Taste Smell Touch This is not all: what did Aristotle leave out? There are other somatosensory.
Chapter 12 Nervous System III - Senses
DO NOW Get into a group of 3 with the people who have the same Case # as you on their Do Now paper. Read the article and summarize it as a group. Choose.
Sensory and Motor Pathways
General Sensory Reception. The Sensory System What are the senses ? How sensory systems work Body sensors and homeostatic maintenance Sensing the external.
1 Sensory Pathways DR. ZAHOOR ALI SHAIKH. Before we talk about sensory pathways we will trace the course of sensory impulse from receptors to the spinal.
The Somatic Sensory System Chapter 12 Friday, November 7, 2003.
Perception. Figure 7.17 Receptive fields and adaptation rates of touch receptors Klein/Thorne: Biological Psychology © 2007 by Worth Publishers.
1 Somatic Sensation ( MCB160 Lecture by Mu-ming Poo, Friday March 9, 2007) Introduction –Adrian’s work on sensory coding –Spinal cord and dorsal root ganglia.
Principles of Human Anatomy and Physiology, 11e1 Chapter 16 Sensory, Motor & Integrative Systems.
The Peripheral Nervous System
Anatomical Substrates of Somatic Sensation
Chapter 12 The Somatic Sensory System. Introduction Somatic Sensation –Enables body to feel, ache, chill –Responsible for touch and pain –Somatic sensory.
CUTANEOUS SENSES Overview of Cutaneous Senses Receptors and Fibers Pathways Gate Control Theory Phantom Limbs.
SENSORY SYSTEM RECEPTORS & SENSORY PATHWAYS
ESAT 3640 Therapeutic Modalities
Chapter 10a Sensory Physiology.
Senses.
how the brain receives and interprets information from the environment
Sense of Touch.
M. Zareinejad.  Kinesthesia/Proprioception/Force –A sense mediated by end organs located in muscles, tendons, and joints. Stimulated by bodily movements.
Somatosensory System. The Integument (aka “Skin”) Giant, washable, stretchable, water-proof sensory organ…The boundary between you and not-you 6-10 pounds.
Nervous System Exercises 22 and 23. Reflexes Reflexes are fast, predictable, automatic, subconscious responses to changes inside or outside the body.
Somatic and Special Senses
University of Jordan1 Sensory System –Sensory Receptors; Neuronal Circuits For Processing Information L6 Faisal I. Mohammed, MD, PhD.
Touch Receptors and Axons Lecture 13 PSY391S John Yeomans.
PNS – Afferent Division Sensory Physiology Part I
Bear: Neuroscience: Exploring the Brain 3e
Assisted Professor Basic Science Department 2012
The Skin Senses of Touch, Temperature, and Pain. Also Includes Kinesthesia and the Vestibular System.
Sensation: The conscious or subconscious awareness of external or internal stimuli. Perception: The conscious awareness and the interpretation of meaning.
SPECIAL SENSES- TOUCH (SOMATIC) Nicholas Brazones, Stephanie Hutchinson, Khaled Nada, Wynne Kirchner.
Touch. Functions: Provides tactile information. Warns us of damaging stimuli. Contains body fluids and organs. Protects against bacteria. Regulates body.
Anatomy and Physiology Special Senses Unit. Sensation Conscious or subconscious awareness of external stimuli.
Listen to the audio lecture while viewing these slides or view the video presentations available through Blackboard Psychology 372 Physiological Psychology.
The Senses.  Somatic – general senses; located all over the body ◦ Pain ◦ Touch ◦ Pressure ◦ Temperature  Special – associated with one area of the.
Somatic Senses General Sensory System. Sensation Define Stimulus Type Sensory Organ Sensory Receptors Exteroceptors Interoceptors Proprioceptors Receptor.
Part 2: Dr. Steve I. Perlmutter Touch Temperature & Pain Proprioception Sensorimotor Neurophysiology of Active Sensing Somatosensory System Receptor Function.
Chapter 12  Touch  Taste  Vision  Hearing  Smell.
Somatosensation Lesson 17. Somatosensation n Sensory info from body n Cutaneous senses l exteroceptors l touch / pain n Kinesthesia l interoceptors l.
SENSORY SYSTEM LECTURE 1 RECEPTORS DR. ZAHOOR ALI SHAIKH.
Sensation- conscious (perception) or subconscious awareness of changes in environment.
Central Nervous System Introduction The Sensory System.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
By: Natasha Zelenka, Lexio Scott, Aneidi Andrew, and Michael Anderson.
Sensory Processes Josée L. Jarry, Ph.D., C.Psych. Introduction to Psychology Department of Psychology University of Toronto May 28, 2003.
Touch, Vision, Smell, Balance, Hearing
Functional Organization of Nervous Tissue Chapter 11
The Skin Example Skin Receptors: Free nerve ending; Pacinian corpuscles; Ruffini endings; Hair follicle ending; Meissner corpuscle; Merkel’s disk Light.
PowerPoint ® Lecture Slides prepared by Leslie Hendon, University of Alabama, Birmingham HUMAN ANATOMY fifth edition MARIEB | MALLATT | WILHELM 14 Copyright.
Somatic senses The somatic senses are the nervous mechanisms that collect sensory information from all over the body. These senses are in contradistinction.
Mapping the human somatosensory cortex – the sensory homunculus – perception of touch, temperature, pain, proprioception, kinesthetics, haptics, sexual.
Somatosensory Systems
© 2012 Pearson Education, Inc. Chapter 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System.
Human Anatomy and Physiology Special Senses. All senses work the same way: Receptors collect information stimulate neurons information is sent to the.
General Sensory Reception
1 Receptors of Somatic Sensation n Mechanoreceptors of the skin –Free nerve ending –Merkel’s disk –Meissner’s corpuscle –Pacinian corpuscle –Hair follicle.
© 2013 Pearson Education, Inc. Peripheral Nervous System (PNS) Provides links from and to world outside body All neural structures outside brain –Sensory.
PSY2301: Biological Foundations of Behavior Somatosensory System Chapter 11.
Somatic Sensory System
Somatosensory Tracts and Maps NBIO 401 – Wednesday October 2, 2013.
Chapter 16 Sensory, Motor, and Integrative Systems.
End of Chapter 46.
Chapter 4 Section 4 & 5 Goal Four: Explain how the skin, chemical, kinesthetic, and vestibular senses work.
Chapter 19A Somatic Senses
Sensory and Motor Pathways
Progress Seminar 권순빈.
Presentation transcript:

Chapter 13: Touch Touch: The skin-based receptor system. The entire surface of the body on which there is living tissue (skin) is a potential receptive surface for the touch system. However, the most active and sensitive part of this receptive field are the hands. In a sense, the two hands are to the touch system, what the two foveas are to the retinas of the visual system. Haptics : active exploratory touch strategies for acquiring information from an object. Haptics includes not only touch information but also kinesthesis (information about the movement and location of the limbs and digits)

Measuring touch sensitivity Von Frey hairs: small hairs, like those found on a paint brush, of various diameter are pressed against different parts of the body to see if it is felt. The thicker the diameter hair needed to get a response, the less sensitive the area. Not surprisingly different parts of the body vary in sensitivity to touch, lips and hands are highly sensitive, back and buttocks, much less so. Furthermore, for any area of body, females tend to be more sensitive than males.

Measuring touch sensitivity Two point thresholds: a little different procedure, but same general results. A compass-type instrument is used which has two adjustable points, points can be set a different distances from each other. Sensitivity is measured by determining how far apart points must be sent before sub. can detect that there are two points stimulating skin, not one.

Physiology of touch Skin receptors: at various depths under the skin are the mechanoreceptors, which start the process of analyzing skin sensations by responding to indentation or pressure on the skin.  In order of depth, nearest to surface to deepest:  a) Meisnner Corpuscles: give strongest response to transient stimulation such as a finger rubbing over a surface. RA-P  b) Merkel Disks: give strongest response to steady pressure by small object. SA-P  c) Ruffini Endings: give greatest response to fairly strong, steady pressure. Are also quite sensitive to movements which result in stretching of skin. SA-D  d) Pacinian Corpuscles: respond best to initiation and termination of diffused pressure against skin. RA-D

Physiology of touch Nerve Fibers: afferent fibers travelling from skin receptors to spin and (for some) eventually brain. These fibers are of four distinct categories. a) Slowly Adapting: fibers which carry messages about steady pressure on skin. Not surprisingly these fibers are connected to Mekel disks and Ruffini Endings in skin.   b) Rapidly Adapting: carry message about transient pressure changes on skin. connected to Miessner and Pacinian Corpuscles. c) Punctate fibers: ones with distinct receptive fields (connect to Miessner & Merkel) d) Diffuse fibers: ones with less disctict receptive fields. (connect to Ruffini & Pacinian).   Combination of these four types produce four types of nerve fibers.

Touch pathways Touch pathway runs up dorsal (back) of spinal column. Some connect with interneurons and motor neurons and mediate reflexive arcs. 2 main pathways: Lemniscal (red; newer) more sophisticated aspects of touch. Spinothalamic (older; blue) pain and temperature.

Somatosensory cortex Major touch processing area in cortex Cortical magnification 4 maps on S-I (primary somatosensory cortex) “middle maps” (3b and 1) respond greatest to light touch. Receive inputs from superficial punctate (SA and RA) fibers. Outer maps (3a and 2) respond best to movements of joints, tendons, and muscles (kinesthetic). Inputs from deep diffuse fibers.

Pain perception Pain serves an important adaptive function – it alerts the organism to potential tissue damage and compels withdraw of affected area from pain source. Chronic pain, however, often makes life miserable for those afflicted. Nociceptors: free nerve endings that signal pain. Two locations: skin surface – temperature; Subcutaneous fat layer: punctures.

Pain fibers A_delta: myelinated; fast responding; sharp, acute; thermal pain C-type: slow responding; building pain; mechanical; thermal; chemical

Pain pathways Same basic design as all touch pathways. Up spinal column to thalamus; then Sensory cortex; but note presence of descending pathway running along same route.

Gate control theory of pain T cells send pain message. When only fast (A-beta; A-alpha) fibers active; no pain. Inhibitory message send from SG to T cells. When both fast and slow (C-fibers) respond, SG cells are inhibited from sending their inhibitory message to T cells, T cells fire and pain message is sent. Note also: T’s can be inhibited by top-down messages from cortex. “Meaning” of pain relevant.

Phantom limbs It is not uncommon for amputees to claim that they experience pain in the missing limb, often this seems associated with cortical re-organization in somatosensory cortex after loss of limb