Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Lipid Transport and Storage Medical Biochemistry Lectures #54 and #55.
Advertisements

Diet Study for Nonalcoholic Fatty Liver Disease Lab meeting.
Samir Parekh, Frank A. Anania  Gastroenterology 
Insulin action is reduced in obesity
THE MANY FUNCTIONS OF INSULIN IN LIPID METABOLISM
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Volume 148, Issue 4, Pages (April 2015)
Lipids in Liver Disease: Looking Beyond Steatosis
Figure 2 Hepatic action of functional foods and supplements
Figure 5 Dendritic cells in liver inflammation
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Patients cured of HCV infection
Figure 1 Pathophysiological aspects of insulin
Figure 5 Lipid droplet consumption
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Samir Parekh, Frank A. Anania  Gastroenterology 
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 ER stress and hepatic steatosis: a vicious cycle
Figure 6 Combination therapy for HCC
Figure 1 Definition and concept of ACLF
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
Figure 3 Serotonin influences many peripheral tissues
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 3 Mechanisms of NS5B-mediated RNA synthesis
Sugar, Sugar Not So Sweet for the Liver
Figure 3 Lipid droplet formation and expansion
Figure 1 Key mechanistic pathways involved in the gut–liver axis in NAFLD progression Figure 1 | Key mechanistic pathways involved in the gut–liver axis.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Schematic of normal and abnormal liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Nat. Rev. Endocrinol. doi: /nrendo
The genetics of alcohol dependence and alcohol-related liver disease
Figure 2 Lipid metabolism and metabolism-disrupting chemicals.
Figure 1 The major pathways of lipid metabolism
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Volume 134, Issue 2, Pages (February 2008)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 1 NAFLD pathogenesis
Assembly and secretion of apoB100- containing lipoproteins
Lipids in Liver Disease: Looking Beyond Steatosis
Figure 2 Classifications and appearance of CCAs
Knockdown of MPST weakens JNK phosphorylation, ameliorates hepatic oxidative stress and suppresses the release of MCP-1. Knockdown of MPST weakens JNK.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Thyroid hormone effects on hepatic lipid metabolism
Volume 135, Issue 6, Pages (December 2008)
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.32 Figure 1 Hepatic steatosis results from an imbalance in lipid storage and lipolysis or secretion Figure 1 | Hepatic steatosis results from an imbalance in lipid storage and lipolysis or secretion. Hepatic steatosis can result from different processes: increased fatty acid (FA) uptake, de novo lipogenesis and triglyceride synthesis combined with lipid droplet (LD) biogenesis or growth; decreased LD catabolism (including decreased fatty acid oxidation); or impaired triglyceride or very-low-density lipoprotein (VLDL) secretion. Factors associated with these processes are listed in the figures, those that upregulate steatosis (green boxes) and those that downregulate steatosis (orange boxes). Gluchowski, N. L. et al. (2017) Lipid droplets and liver disease: from basic biology to clinical implications Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.32