For University Use Only

Slides:



Advertisements
Similar presentations
Software Engineering: A Practitioner’s Approach Chapter 25 Process and Project Metrics copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc.
Advertisements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Project Estimation: Metrics and Measurement
Chapter 4 Software Process and Project Metrics
1 Estimating Software Development Using Project Metrics.
Metrics. A Good Manager Measures measurement What do we use as a basis? size? size? function? function? project metrics process metrics process product.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Chapter 4 Software Process and Project Metrics
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
Metrics for Process and Projects
Metrics for Process and Projects
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
A Good Manager Measures
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Software Engineering Software Process and Project Metrics.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 Chapter 4 Software Process and Project Metrics.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Lecture 4 Software Metrics
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
Computing and SE II Chapter 15: Software Process Management Er-Yu Ding Software Institute, NJU.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Software Engineering: A Practitioner’s Approach Chapter 25 Process and Project Metrics Software Engineering: A Practitioner’s Approach Chapter 25 Process.
SOFTWARE PROCESS AND PROJECT METRICS. Topic Covered  Metrics in the process and project domains  Process, project and measurement  Process Metrics.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1/11/2016CS-499G1 Costs without Maintenance. 1/11/2016CS-499G2 Costs with Maintenance.
Chapter 22 Metrics for Process and Projects Software Engineering: A Practitioner’s Approach 6 th Edition Roger S. Pressman.
1 These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill 2009). Slides copyright 2009 by Roger Pressman.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and are provided with permission by.
1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.
1 Software Engineering: A Practitioner’s Approach Chapter 25 Process and Project Metrics Software Engineering: A Practitioner’s Approach Chapter 25 Process.
Chapter 22 Process and Project Metrics
For University Use Only
Software Engineering (CSI 321)
Chapter 4 Software Process and Project Metrics
For University Use Only
Software Project Sizing and Cost Estimation
Why Do We Measure? assess the status of an ongoing project
For University Use Only
For University Use Only
Why Do We Measure? assess the status of an ongoing project
Chapter 25 Process and Project Metrics
Software Engineering: A Practitioner’s Approach, 6/e Chapter 22 Process and Project Metrics copyright © 1996, 2001, 2005 R.S. Pressman & Associates,
Software metrics.
Why Do We Measure? assess the status of an ongoing project
Why Do We Measure? assess the status of an ongoing project
Chapter 32 Process and Project Metrics
Chapter 22 Process and Project Metrics
Metrics for Process and Projects
For University Use Only
Presentation transcript:

For University Use Only Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e copyright © 1996, 2001 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited. This presentation, slides, or hardcopy may NOT be used for short courses, industry seminars, or consulting purposes.

Chapter 4 Software Process and Project Metrics

Measurement & Metrics ... collecting metrics is too hard ... it's too time-consuming ... it's too political ... it won't prove anything ... Anything that you need to quantify can be measured in some way that is superior to not measuring it at all .. Tom Gilb

Why do we Measure? To characterize To evaluate To predict To improve

A Good Manager Measures process process metrics project metrics measurement product metrics product What do we use as a basis? • size? • function?

Process Metrics majority focus on quality achieved as a consequence of a repeatable or managed process statistical SQA data error categorization & analysis defect removal efficiency propagation from phase to phase reuse data

Project Metrics Effort/time per SE task Errors uncovered per review hour Scheduled vs. actual milestone dates Changes (number) and their characteristics Distribution of effort on SE tasks

Product Metrics focus on the quality of deliverables measures of analysis model complexity of the design internal algorithmic complexity architectural complexity data flow complexity code measures (e.g., Halstead) measures of process effectiveness e.g., defect removal efficiency

Metrics Guidelines Use common sense and organizational sensitivity when interpreting metrics data. Provide regular feedback to the individuals and teams who have worked to collect measures and metrics. Don’t use metrics to appraise individuals. Work with practitioners and teams to set clear goals and metrics that will be used to achieve them. Never use metrics to threaten individuals or teams. Metrics data that indicate a problem area should not be considered “negative.” These data are merely an indicator for process improvement. Don’t obsess on a single metric to the exclusion of other important metrics.

Normalization for Metrics

Typical Size-Oriented Metrics errors per KLOC (thousand lines of code) defects per KLOC $ per LOC page of documentation per KLOC errors / person-month LOC per person-month $ / page of documentation

Typical Function-Oriented Metrics errors per FP (thousand lines of code) defects per FP $ per FP pages of documentation per FP FP per person-month

Why Opt for FP Measures?

Computing Function Points

Analyzing the Information Domain

Taking Complexity into Account

Measuring Quality Correctness — the degree to which a program operates according to specification Maintainability—the degree to which a program is amenable to change Integrity—the degree to which a program is impervious to outside attack Usability—the degree to which a program is easy to use

Defect Removal Efficiency DRE = (errors) / (errors + defects) where errors = problems found before release defects = problems found after release

Managing Variation The mR Control Chart