The Origin of the Solar System

Slides:



Advertisements
Similar presentations
CHAPTER 5: Formation of the Solar System and Other Planetary Systems.
Advertisements

Formation of the Solar System
Structure & Formation of the Solar System
 The outer planets are called Jovian or Jupiter- like.  These planets are made of gas and are several times more massive than the Earth.  The Jovian.
Copyright © 2012 Pearson Education, Inc. The Formation of the Solar System.
1 Formation of Our Solar System Image: Lunar and Planetary Laboratory: 1.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Astronomy Pic of the Day. The Solar System Ingredients?
Chapter 8 Welcome to the Solar System. 8.1 The Search for Origins Our goals for learning What properties of our solar system must a formation theory explain?
The Solar System 1 star 9 8 planets 63 (major) moons
A Survey of the Solar System Class web site: Please take your assigned transmitter.
The Origin of the Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
An Introduction to Astronomy Part VI: Overview and Origin of the Solar System Lambert E. Murray, Ph.D. Professor of Physics.
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
Chapter 6 Our Solar System and Its Origin Comparative Planetology By studying the differences and similarities between the planets, moons, asteroids.
The Origin of the Solar System
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
Copyright © 2010 Pearson Education, Inc. Our Solar System.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
Comparative Planetology I: Our Solar System
The Origin of the Solar System
The Origin of the Solar System Lecture 13. Homework 7 due now Homework 8 – Due Monday, March 26 Unit 32: RQ1, TY1, 3 Unit 33: RQ4, TY1, 2, 3 Unit 35:
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
Astronomy 100: Formation and Structure of the Solar System What are the properties of the solar system? How are these properties explained by theories.
Outer Planets.  The outer planets are called Jovian or Jupiter- like.  Made of gas and are several times MORE massive than the Earth.  Grew to present.
Formation of the Solar System
Chapter 6.
Survey of the Solar System
AST 111 Lecture 15 Formation of the Solar System.
Formation of Our Solar System Modified presentation originally created by the Lunar and Planetary Institute Image: Lunar and Planetary Laboratory:
Chapter 6 The Solar System. 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout of the Solar System 6.4 Terrestrial.
Survey of the Solar System. Introduction The Solar System is occupied by a variety of objects, all maintaining order around the sun The Solar System is.
The Origin of the Solar System Movie: The History of the Solar System Please swipe your ID for attendance tracking and take your assigned transmitter.
A Survey of the Solar System. Geocentric vs. Heliocentric.
23.1 The Solar System The Solar System.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
Origins of the Planets and Moons Our sun was the center of a nebula (cloud of dust and gas). Planets formed when bits of matter first collided and aggregated.
The Origin of the Solar System. In the beginning, we started out looking like this, just a huge cloud of gas in space….
Formation of our solar system: The nebular hypothesis (Kant, 1755) Hydrogen (H), He (He) and “stardust” (heavier elements that were formed in previous.
HNRS 227 Fall 2005 Chapter 13 The Solar System presented by Dr. Geller 27 October 2005.
Chapter 4 Exploring Our Evolving Solar System. Comparing the Planets: Orbits The Solar System to Scale* – The four inner planets are crowded in close.
Formation of the Solar System. A model of the solar system must explain the following: 1.All planets orbit the sun counterclockwise 2.All planets orbit.
© 2010 Pearson Education, Inc. Chapter 8 Formation of the Solar System.
Lecture 32: The Origin of the Solar System Astronomy 161 – Winter 2004.
Late Work Due 12/20/13 Remember ain’t no butts about it! Sticking your head in the sand won’t make the deadlines go away 11 Days Remain.
Formation of the Solar System. The Age of the Solar System We can estimate the age of the Solar System by looking at radioactive isotopes. These are unstable.
The Solar System Chapter The Solar System 99.85% of the mass of our solar system is contained in the Sun 99.85% of the mass of our solar system.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 4 The Solar System.
The Origin of the Solar System. I. The Great Chain of Origins A. Early Hypotheses B. A Review of the Origin of Matter C. The Solar Nebula Hypothesis D.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 6.
The Gas Giant (Jovian) Planets Jupiter Uranus Saturn Neptune The Terrestrial (Rocky/Metal) Planets Mercury Earth Venus Mars.
Warmup  What is the line of latitude that cuts through the center of the earth?  What is ZERO degrees longitude?  What is 180 degrees longitude?
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
The Formation of Our Solar System The Nebular Hypothesis.
1 Earth and Other Planets 3 November 2015 Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from a great.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Our Solar System and Its Origin
The Origin of the Solar System
The Solar System (Sections 4.1 and 4.3 only)
Survey of the Solar System
The Origin of the Solar System
The Origin of the Solar System
The Origin of the Solar System
Formation of the Solar System and Other Planetary Systems.
The Origin of the Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
3A Objectives Describe the nebular theory in detail.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Presentation transcript:

The Origin of the Solar System

Interstellar Cycle Ultimately, stars form the interstellar medium. Stars replenish the interstellar medium at the end of their life cycle. There is a balance between the interstellar medium and stars.

The Interstellar Medium 99% gas Mostly Hydrogen and Helium 1% dust Some volatile molecules H20, CO2, CO, CH4, NH3 Most common Metals Graphites Silicates (Fe, Al, Mg) (C) (Si)

Molecules Found Based on spectroscopy, more than 136 molecules have been found in the ISM. Among them the most common, H2 and the more exotic like formaldehyde and glycine and acetic acid.

Interstellar Molecules Here are some formaldehyde (H2CO) emission spectra from different parts of M20:

How Did the Solar System Form? Nebular contraction: Cloud of gas and dust contracts due to gravity; conservation of angular momentum means it spins faster and faster as it contracts

How Did the Solar System Form? Conservation of angular momentum says that product of radius and rotation rate must be constant:

Solar System Formation

How Did the Solar System Form? Condensation theory: Interstellar dust grains help cool cloud, and act as condensation nuclei

Asteroid Belt Ice Line Kuiper Belt T  T Terrestrial planets Jovian planets Condensation – where things become solid Where could the dust be solid? Where could the ices be solid? Where would you get terrestrial planets? Jovian planets?

The Condensation of Solids To compare densities of planets, compensate for compression due to the planet’s gravity: Only condensed materials could stick together to form planets Temperature in the protostellar cloud decreased outward. Further out  Protostellar cloud cooler  metals with lower melting point condensed  change of chemical composition throughout solar system

How Did the Solar System Form? Temperature in cloud determines where various materials condense out:

Formation and Growth of Planetesimals Planet formation starts with clumping together of grains of solid matter: Planetesimals Planetesimals (few cm to km in size) collide to form planets. Planetesimal growth through condensation and accretion. Gravitational instabilities may have helped in the growth of planetesimals into protoplanets.

The Story of Planet Building Planets formed from the same protostellar material as the sun, still found in the Sun’s atmosphere. Rocky planet material formed from clumping together of dust grains in the protostellar cloud. Mass of less than ~ 15 Earth masses: Mass of more than ~ 15 Earth masses: Planets can grow by gravitationally attracting material from the protostellar cloud Planets can not grow by gravitational collapse Earthlike planets Jovian planets (gas giants)

The Growth of Protoplanets Simplest form of planet growth: Unchanged composition of accreted matter over time As rocks melted, heavier elements sink to the center  differentiation This also produces a secondary atmosphere  outgassing Improvement of this scenario: Gradual change of grain composition due to cooling of nebula and storing of heat from potential energy

Primary Atmospheres The primary atmosphere for every terrestrial world was composed mostly of light gases that accreted during initial formation. These gases are similar to the primordial mixture of gases found in the Sun and Jupiter. That is 94.2% H, 5.7% He and everything else less that 0.1%. This primary atmosphere was lost on the terrestrial planets. Why? mass, radius of planet (factors of escape velocity of a planet) surface temperature (distance from Sun plus effects of atmosphere heating) Mass of the atoms What determines if a particular atom is retained by a planet's gravitational field? if the atom is moving less than the escape velocity for the planet, it stays. If it moves faster than escape velocity, it escapes into outer space. So note that for the outer Jovian worlds, all the primary, initial atmosphere is held. But for the inner worlds, most of the original H and He has been lost. These inner worlds then will form a secondary atmosphere composed of the outgassing from tectonic activity.

Secondary Atmospheres For the warmer terrestrial worlds, the light, gaseous elements (H, He) are lost. The remaining elements are grouped into the rocky materials (iron, olivine, pyroxene) and the icy materials (H2O, CO2, CH4, NH3, SO2). The icy materials are more common in the outer Solar System, they are delivered to the inner Solar System in the form of comets. The rocky and icy materials mix in the early crust and mantle. If the planet cools quickly, there is little to no tectonic activity and the icy materials are trapped in the mantle (like the Galilean moons). If the planet has a large mass (which means lots of trapped heat from formation), then there is a large amount of tectonic activity -> volcanos. The icy materials are turned to gases in the warm mantle and returned to the planet surface in the form of outgassing to produce a secondary atmosphere. The atmospheres of Venus, Earth and Mars are secondary atmospheres. The composition of outgassing is similar for Venus, Earth and Mars and is composed of 58% H2O, 23% CO2, 13% SO2, 5% N2 and traces of noble gases (Ne, Ar, Kr). The latter evolution of this outgassing is driven primarily by the surface temperature and chemistry of the planet.

The Jovian Problem Two problems for the theory of planet formation: 1) Observations of extrasolar planets indicate that Jovian planets are common. 2) Protoplanetary disks tend to be evaporated quickly (typically within ~ 100,000 years) by the radiation of nearby massive stars.  Too short for Jovian planets to grow! Solution: Computer simulations show that Jovian planets can grow by direct gas accretion without forming rocky planetesimals.

Our Solar System

All orbits but Pluto’s are close to same plane The Overall Layout of the Solar System All orbits but Pluto’s are close to same plane

Sense of revolution: counter-clockwise Planetary Orbits Orbits generally inclined by no more than 3.4o All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane (ecliptic). Exceptions: Mercury (7o) Pluto (17.2o) Mercury Venus Mars Sense of revolution: counter-clockwise Earth Jupiter Sense of rotation: counter-clockwise (with exception of Venus, Uranus, and Pluto) Pluto Uranus Saturn Neptune (Distances and times reproduced to scale)

Terrestrial and Jovian Planets

Survey of the Solar System Relative Sizes of the Planets Assume, we reduce all bodies in the solar system so that the Earth has diameter 0.3 mm. Sun: ~ size of a small plum. Mercury, Venus, Earth, Mars: ~ size of a grain of salt. Jupiter: ~ size of an apple seed. Saturn: ~ slightly smaller than Jupiter’s “apple seed”. Pluto: ~ Speck of pepper.

Two Kinds of Planets Planets of our solar system can be divided into two very different kinds: Terrestrial (earthlike) planets: Mercury, Venus, Earth, Mars Jovian (Jupiter-like) planets: Jupiter, Saturn, Uranus, Neptune

Terrestrial Planets Four inner planets of the solar system Relatively small in size and mass (Earth is the largest and most massive) Rocky surface Surface of Venus can not be seen directly from Earth because of its dense cloud cover.

Craters on Planets’ Surfaces Craters (like on our Moon’s surface) are common throughout the Solar System. Not seen on Jovian planets because they don’t have a solid surface.

The Jovian Planets Much lower average density All have rings (not only Saturn!) Mostly gas; no solid surface

Clearing the Nebula Remains of the protostellar nebula were cleared away by: Radiation pressure of the sun Ejection by close encounters with planets Solar wind Sweeping-up of space debris by planets Surfaces of the Moon and Mercury show evidence for heavy bombardment by asteroids.

Evidence for Ongoing Planet Formation Many young stars in the Orion Nebula are surrounded by dust disks: Probably sites of planet formation right now!

Dust Disks Around Forming Stars Dust disks around some T Tauri stars can be imaged directly (HST).

Quiz Questions 1. How is the solar nebula theory supported by the motion of Solar System bodies? a. All of the planets orbit the Sun near the Sun's equatorial plane. b. All of the planets orbit in the same direction that the Sun rotates. c. Six out of seven planets rotate in the same direction as the Sun. d. Most moons orbit their planets in the same direction that the Sun rotates. e. All of the above.

Quiz Questions 2. Which of the following is NOT a property associated with terrestrial planets? a. They are located close to the Sun. b. They are small in size. c. They have low mass. d. They have low density. e. They have few moons.

Quiz Questions 3. According to the solar nebula theory, why are Jupiter and Saturn much more massive than Uranus and Neptune? a. Jupiter and Saturn formed earlier and captured nebular gas before it was cleared out. b. Jupiter and Saturn contain more high-density planet building materials. c. Uranus and Neptune have suffered more interstellar wind erosion. d. Both a and b above. e. All of the above.

Quiz Questions 4. How does the solar nebula theory account for the drastic differences between terrestrial and Jovian planets? a. The temperature of the accretion disk was high close to the Sun and low far from the Sun. b. Terrestrial planets formed closer to the Sun, and are thus made of high-density rocky materials. c. Jovian planets are large and have high-mass because they formed where both rocky and icy materials can condense. d. Jovian planets captured nebular gas as they had stronger gravity fields and are located where gases move more slowly. e. All of the above.

Quiz Questions 5. What is the difference between the processes of condensation and accretion? a. Both are processes that collect particles together. b. Condensation is the building of larger particles one atom (or molecule) at a time, whereas accretion is the sticking together of larger particles. c. Accretion is the building of larger particles one atom (or molecule) at a time, whereas condensation is the sticking together of larger particles. d. Both a and b above. e. Both a and c above.

Quiz Questions 6. Which of the following is the most likely major heat source that melted early-formed planetesimals? a. Tidal flexing. b. The impact of accreting bodies. c. The decay of long-lived unstable isotopes. d. The decay of short-lived unstable isotopes. e. The transfer of gravitational energy into thermal energy.

Quiz Questions 7. Which of the following accurately describes the differentiation process? a. High-density materials sink toward the center and low-density materials rise toward the surface of a molten body. b. Low-density materials sink toward the center and high-density materials rise toward the surface of a molten body. c. Only rocky materials can condense close to the Sun, whereas both rocky and icy materials can condense far from the Sun. d. Both rocky and icy materials can condense close to the Sun, whereas only rocky materials can condense far from the Sun. e. Small bodies stick together to form larger bodies.

Quiz Questions 8. How did the solar nebula get cleared of material? a. The radiation pressure of sunlight pushed gas particles outward. b. The intense solar wind of the youthful Sun pushed gas and dust outward. c. The planets swept up gas, dust, and small particles. d. Close gravitational encounters with Jovian planets ejected material outward. e. All of the above.

Answers 1. e 2. d 3. a 4. e 5. b 6. d 7. a 8. e