Unit 4: Functions Final Exam Review
Topics to Include Linear Input/Output Quadratic Input/Output Linear Regression Quadratic Regression Exponential Regression Correlation/R2
Linear Input/Output Input – the numbers PLUGGED IN to an equation Output – the ANSWER you get after plugging in a number To finish the table, follow the rule Example: Rule: Add 4
Linear Input/Output You Try! 1. Subtract 10 2. Add 4
Linear Input/Output You can also fill in a table based on an EQUATION Plug in the X VALUE to find the Y value. Example: y = 3x – 2
Linear Input/Output You Try! 1. y = x + 8 2. y = 4x + 1
Quadratic Input/Output Quadratic Function: 𝒂𝒙 𝟐 +𝒃𝒙+𝒄 A quadratic function is shaped like a U and is called a PARABOLA Example: 𝑥 2 +2𝑥+3
Quadratic Input/Output You Try! 1. 𝑥 2 +5 2. 𝑥 2 −3𝑥+2
Linear Regression Linear Regression lines follow a STRAIGHT LINE pattern. To find the linear regression 1. Plug in table to your calculator (STAT EDIT) 2. Click STAT and then go over to CALC and choose LINREG Hit ENTER. The calculator will give you the linear regression in the format y = mx + b
Linear Regression Example: Answer: y = 1.05x + 22.32
Linear Regression You Try!
Quadratic Regression Quadratic Regression lines follow a U SHAPED pattern. To find the quadratic regression 1. Plug in table to your calculator (STAT EDIT) 2. Click STAT and then go over to CALC and choose QUADREG Hit ENTER. The calculator will give you the linear regression in the format y = ax2 + bx + c
quadratic Regression Example: Answer: y = 0.02x2 – 1.36x + 14.06
Quadratic Regression You Try!
exponential Regression Exponential Regression lines will either display exponential GROWTH or exponential DECAY. To find the exponential regression 1. Plug in table to your calculator (STAT EDIT) 2. Click STAT and then go over to CALC and choose EXPREG Hit ENTER. The calculator will give you the linear regression in the format y = a ∙ bX
exponential Regression Example: Answer: y = 5 ∙ 2x
Exponential Regression You Try!
Correlation/r2 Correlation – how STRONG or how WEAK a regression line is If the correlation/R2 value is close to 1, the regression line is STRONG If the correlation/R2 value is close to 0, the regression line is WEAK
Correlation/r2 Example: Determine if the regression line for each data set is strong or weak. 1. Linear Regression 2. Quadratic Regression R2 = 0.9275 Close to 1 STRONG R2 = 0.1111 Close to 0 WEAK
Correlation/r2 You Try! Exponential Regression Linear Regression
ALL DONE