Variable reflectivity signal-recycling mirror and control

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Spring LSC 2001 LIGO-G W E2 Amplitude Calibration of the Hanford Recombined 2km IFO Michael Landry, LIGO Hanford Observatory Luca Matone, Benoit.
Optics of GW detectors Jo van den Brand
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Towards dual recycling with the aid of time and frequency domain simulations M. Malec for the GEO 600 team Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut.
Virgo Control Noise Reduction
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Joshua Smith December 2003 Detector Characterization of Dual-Recycled GEO600 Joshua Smith for the GEO600 team.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
Variable reflectivity signal-recycling mirror and control Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Arm Length Stabilisation for Advanced Gravitational Wave Detectors Adam Mullavey, Bram Slagmolen, Daniel Shaddock, David McClelland Peter Fritschel, Matt.
RSE Experiment in Japan Feb. 20 th, 2004 Aspen Meeting LIGO-G Z K.Somiya, O.Miyakawa, P.Beyersdorf, and S.Kawamura.
LIGO- G R Aspen winter conference, January Toward the Advanced LIGO optical configuration investigated in 40meter prototype Aspen winter.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Optical Spring Experiments With The Glasgow 10m Prototype Interferometer Matt Edgar.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
The VIRGO detection system
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Testing Advanced LIGO length sensing and control scheme at the Caltech 40m interferometer. at the Caltech 40m interferometer. Yoichi Aso*, Rana Adhikari,
Interferometer configurations for Gravitational Wave Detectors
Detuned Twin-Signal-Recycling
Demonstration of lock acquisition and optical response on
GEO600 Control aspects where do the error signal come from?
Overview of quantum noise suppression techniques
Progress toward squeeze injection in Enhanced LIGO
Nergis Mavalvala Aspen January 2005
Status report of Polarization RSE
Generation of squeezed states using radiation pressure effects
Nergis Mavalvala MIT IAU214, August 2002
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Quantum effects in Gravitational-wave Interferometers
Homodyne or heterodyne Readout for Advanced LIGO?
Ponderomotive Squeezing Quantum Measurement Group
Australia-Italy Workshop October 2005
Squeezed states in GW interferometers
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
LIGO Quantum Schemes NSF Review, Oct
“Traditional” treatment of quantum noise
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Variable reflectivity signal-recycling mirror and control Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics

Outline Tuned and detuned signal recycling Introduction of VRSM Layout of the initial experiment Error signals First results Carrier/Subcarrier offset phase-locking control scheme Summary David Rabeling, Malcolm Gray, David McClelland Control and VRSM

Signal Recycling I Signal recycling can be used to enhance SNL sensitivity of gravitational wave detectors within certain bandwidth: Tuned SR: SRC is tuned on resonance with carrier Requires broadband mode: low finesse of SRC Detuned SR: SRC is detuned from resonance with carrier Enables narrowband mode: high finesse of SRC Microscopic tuning of SRM position alters the tuning Changing the reflectivity of SRM alters the bandwidth Control and VRSM

Signal Recycling II Control and VRSM

125 W input Detuned quant T=0.1% Detuned total T=0.1% Tuned total T=7% 10 -25 -24 -23 -22 -21 -20 h(f) [1/sqrt Hz] 1 2 3 4 Detuned total T=0.1% Tuned total T=7% Tuned quant T=7% Detuned quant T=0.1% Frequency [Hz]

Complication Rotational stage Cantilever springs 360 µm Coilholder for 180 mm 280 mm 420 mm 360 µm Upper masses Coilholder for local control Activ stack isolator 200 µm Steel wire loops 162 µm Intermediate masses Mirror 2,9 kg 150 mm Magnet-coil actuator 3 mm

Complicaton: Solution: A mirror with a reflectivity Changing the reflectivity of the signal-recycling mirror causes a down-time of the GWD for a substantial period of time! A mirror with a reflectivity that can be varied on demand: a VRSM Solution: Control and VRSM

VRSM Can be realised by: Fabry-Perot cavity Thermal tuning of an etalon Kawabe, Hild et al. Downside: Slow and lateral thermal gradients the substrate Michelson interferometer deVine, Shaddock, McClelland Downside: Very complex system Fabry-Perot cavity Strain, Hough Downside: Complex reflectivity Control and VRSM

Simplification of Layout Signal-recycling mirror Power-recycling Arm-cavity Michelson interferometer `Michelson´ Variable reflectivity signal-recycling Dual recycled Michelson interferometer with arm cavities Control and VRSM

Simplification of Layout Signal-recycling mirror Power-recycling Arm-cavity Michelson interferometer `Michelson´ Variable reflectivity signal-recycling Collapse Michelson interferometer into one mirror Control and VRSM

Variable reflectivity Introduction of VRSM Signal-recycling mirror Power-recycling Arm-cavity Michelson interferometer `Michelson´ Variable reflectivity signal-recycling Control and VRSM

Experimental Layout ~ Control of SRC via in-phase error signal shifter PBS R1 R2 R3 190 MHz Local Oscillator Laser l/2 RF output SRC FSR = 380 MHz V RSM 30 GHz Signal ~ Quadrature errror signal Lowpass filter Servo Isolator In-phase modulator l/4 Control of SRC via in-phase error signal Control of VRSM via in-quardature error signal Control and VRSM

Error Signals Control and VRSM Amplitude and phase response of a narrow linewidth cavity Amplitude and phase response of a broad linewidth cavity 1.0 1.0 0.8 Amplitude 0.8 0.6 Amplitude Phase 0.6 0.4 Phase 0.4 0.2 0.2 [Arb. units] 0.0 0.0 [Arb. units] -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1.0 -1.0 -200 -150 -100 -50 50 100 150 200 -200 -150 -100 -50 50 100 150 200 Frequency [MHz] Frequency [MHz] PDH error signal for a narrow linewidth cavity PDH error signal for a broad linewidth cavity 0.5 0.4 0.4 In quadrature 0.3 In quadrature 0.3 In phase 0.2 In phase 0.2 0.1 0.1 [Arb. units] 0.0 [Arb. units] 0.0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.4 -0.3 -0.5 -0.4 -200 -150 -100 -50 50 100 150 200 -200 -150 -100 -50 50 100 150 200 Frequency [MHz] Frequency [MHz] Control and VRSM

Experimental layout ~ Control of SRC via in-phase error signal shifter PBS R1 R2 R3 190 MHz Local Oscillator Laser RF output SRC FSR = 380 MHz V RSM 30 GHz Signal ~ Quadrature errror signal Lowpass filter Servo Isolator In-phase modulator l/2 l/4 Control of SRC via in-phase error signal Control of VRSM via in-quardature error signal Control and VRSM

First results... ...of a linear three mirror coupled cavity when varying the reflectivity of the VRSM from R=93% over R=87% to R=63% Theoretical frequency response Experimental frequency response 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 T/Tmax 0.5 T/Tmax 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 370 375 380 385 390 395 400 405 410 370 375 380 385 390 395 400 405 410 Frequency [MHz] Frequency [MHz] Control and VRSM

Carrier/Subcarrier ~ VRSM cavity Phase modulator Power recycled Michelson interferometer Carrier laser VRSM cavity ~ In quadrature Frequency offset In phase Output modecleaner Sub-carrier laser Phase modulator Readout Control and VRSM

Frequency Offsets Control and VRSM VRSM reflectivities for some carrier-subcarrier offsets Norm. Refl. Effect on signal cavity Norm. Trans. Control and VRSM

Frequency Offsets II Control and VRSM Norm. SRC reflection 1.0 0.9 0.8 Norm. SRC reflection 0.7 Norm. VRSM reflection 0.6 0.5 0.4 0.3 0.2 0.1 Narrowband mode Broadband mode Norm. refl. Norm. refl. Control and VRSM

Summary VRSM and Control The use of a VRSM eases the change of bandwidth, avoiding long down-times of the detector A new way to control the SRC including a VRSM by using an auxiliary laser that is offset phase locked to the carrier laser This control scheme is compatible with the injection of squeezed light First experiments using a linear three mirror cavity are carrried out A more complex experiment using a dual-recycled Michelson interferometer with arm cavities is in preparation Control and VRSM