Turbulent mixing in shallow water basins; parameterization of vertical turbulent exchange coefficient 19 th Congress of Mechanics 26 th August 2009 A.I.Sukhinov,

Slides:



Advertisements
Similar presentations
by Sylvie Malardel (room 10a; ext. 2414)
Advertisements

Parametrization of surface fluxes: Outline
Introduction Irina Surface layer and surface fluxes Anton
9 th INTERNATIONAL CFD CONFERENCE September Institute of Power Technology MOSCOW, Russia.
What’s quasi-equilibrium all about?
Thermohaline structure, processes responsible for its formation and variation in the Gulf of Finland Taavi Liblik Marine Systems Institute at Tallinn University.
Meteorological tsunamis on the Pacific coast of North America
Amauri Pereira de Oliveira
Hydrodynamics and Sediment Transport Modelling Ramiro Neves
Section 2: The Planetary Boundary Layer
Numerical simulation of internal tides in the Sicily and Messina Straits Jihene Abdennadher and Moncef Boukthir Institut Preparatoire aux Etudes d’Ingenieur.
Fluidyn -FLOWSOL March D numerical simulation of surface flows.
A numerical simulation of urban and regional meteorology and assessment of its impact on pollution transport A. Starchenko Tomsk State University.
Internal tide energetics in the Sicilian Strait and Adjacent areas Jihène Abdennadher and Moncef Boukthir UR1304, Institut Préparatoire aux Etudes d’Ingénieur.
Autochthonous Salt Deformation Integrated with Basin Modeling Example on a GulfSpan Dip Line.
Role of the Southern Ocean in controlling the Atlantic meridional overturning circulation Igor Kamenkovich RSMAS, University of Miami, Miami RSMAS, University.
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
Modeling the M 2 and O 1 Barotropic and Baroclinic Tides in the Gulf of Mexico Using the HYbrid Coordinate Ocean Model (HYCOM) Flavien Gouillon 1 ; B.
P. N. Vinayachandran Centre for Atmospheric and Oceanic Sciences (CAOS) Indian Institute of Science (IISc) Bangalore Summer.
Vertical Mixing Parameterizations and their effects on the skill of Baroclinic Tidal Modeling Robin Robertson Lamont-Doherty Earth Observatory of Columbia.
Exchange Flows Through a Long Shallow Channel Edwin A. Cowen DeFrees Hydraulics Laboratory, School of Civil & Environmental Engineering, Cornell University,
Institute of Oceanogphy Gdańsk University Jan Jędrasik The Hydrodynamic Model of the Southern Baltic Sea.
Juan Carlos Ortiz Royero Ph.D.
Suspended Load Above certain critical shear stress conditions, sediment particles are maintained in suspension by the exchange of momentum from the fluid.
FUNDAMENTAL EQUATIONS, CONCEPTS AND IMPLEMENTATION
Potential mechanism for the initial formation of rhythmic coastline features M.van der Vegt, H.M. Schuttelaars and H.E. de Swart Institute for Marine and.
Define Current decreases exponentially with depth. At the same time, its direction changes clockwise with depth (The Ekman spiral). we have,. and At the.
Define Current decreases exponentially with depth and. At the same time, its direction changes clockwise with depth (The Ekman spiral). we have,. and At.
Model LSW formation rate (2 yr averages) estimated from: (red) CFC-12 inventories, (black) mixed layer depth and (green) volume transport residual. Also.
Xin Xi. 1946: Obukhov Length, as a universal length scale for exchange processes in surface layer. 1954: Monin-Obukhov Similarity Theory, as a starting.
The modeling of the channel deformations in the rivers flowing into permafrost with an increase in ambient temperature E. Debolskaya, E. Zamjatina, I.Gritsuk.
Governing equations: Navier-Stokes equations, Two-dimensional shallow-water equations, Saint-Venant equations, compressible water hammer flow equations.
Equations that allow a quantitative look at the OCEAN
Momentum Equations in a Fluid (PD) Pressure difference (Co) Coriolis Force (Fr) Friction Total Force acting on a body = mass times its acceleration (W)
Modeling the upper ocean response to Hurricane Igor Zhimin Ma 1, Guoqi Han 2, Brad deYoung 1 1 Memorial University 2 Fisheries and Oceans Canada.
The Governing Equations The hydrodynamic model adopted here is the one based on the hydrostatic pressure approximation and the boussinesq approximation,
A canopy model of mean winds through urban areas O. COCEAL and S. E. BELCHER University of Reading, UK.
The Linear and Non-linear Evolution Mechanism of Mesoscale Vortex Disturbances in Winter Over Western Japan Sea Yasumitsu MAEJIMA and Keita IGA (Ocean.
Three Lectures on Tropical Cyclones Kerry Emanuel Massachusetts Institute of Technology Spring School on Fluid Mechanics of Environmental Hazards.
What makes an ocean model coastal ?
Modellierung von Sedimenttransporten im Wattenmeer - Gerold Brink-Spalink - Forschergruppe BioGeoChemie des Watts TP 4 Gerold Brink-Spalink Jörg-Olaf Wolff.
“Very high resolution global ocean and Arctic ocean-ice models being developed for climate study” by Albert Semtner Extremely high resolution is required.
General Description of coastal hydrodynamic model.
Sensitivity study of St Andrew Bay rapid response system for Naval applications LCDR Patrice Pauly, French Navy Thesis Advisor:Pr. Peter C. Chu,NPS Second.
CEE 262A H YDRODYNAMICS Lecture 13 Wind-driven flow in a lake.
Land-Ocean Interactions: Estuarine Circulation. Estuary: a semi-enclosed coastal body of water which has a free connection with the open sea and within.
Conservation of Salt: Conservation of Heat: Equation of State: Conservation of Mass or Continuity: Equations that allow a quantitative look at the OCEAN.
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
 p and  surfaces are parallel =>  =  (p) Given a barotropic and hydrostatic conditions, is geostrophic current. For a barotropic flow, we have and.
Interannual to decadal variability of circulation in the northern Japan/East Sea, Dmitry Stepanov 1, Victoriia Stepanova 1 and Anatoly Gusev.
Parameterization of the Planetary Boundary Layer -NWP guidance Thor Erik Nordeng and Morten Køltzow NOMEK 2010 Oslo 19. – 23. April 2010.
15 Annual AOMIP Meeting. WHOI, 1- 4 November 2011 Numerical modeling of the Atlantic Water distribution in the upper Arctic Ocean: Sensitivity studies.
The effect of tides on the hydrophysical fields in the NEMO-shelf Arctic Ocean model. Maria Luneva National Oceanography Centre, Liverpool 2011 AOMIP meeting.
E. Golubeva, G.Platov, M.Krayneva, D.Yusupova Institute of Computational Mathematics and Mathematical Geophysics, SB RAS Novosibirsk,
Estuarine Hydrodynamics
Modelling of Marine Systems. Shallow waters Equations.
For a barotropic flow, we have is geostrophic current.
/ Vidy Bay hydrodynamics under different meteorological conditions
Define and we have • At the sea surface (z=0), the surface current flows at 45o to the right of the wind direction Depends on constant Az => • Current.
APPLICATION OF NEW CLIMATE CHANGE RESULTS TO VENICE SURGE STATISTICS R
Enhancement of Wind Stress and Hurricane Waves Simulation
Water, salt, and heat budget
Coupled atmosphere-ocean simulation on hurricane forecast
For a barotropic flow, we have is geostrophic current.
Shelf-basin exchange in the Western Arctic Ocean
Coupled Atmosphere-Wave-Ocean Modeling Experiments in Hurricanes
Lake Iseo Field Experiment
Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity
  Robin Robertson Lamont-Doherty Earth Observatory
Radionuclide transport modelling
Presentation transcript:

Turbulent mixing in shallow water basins; parameterization of vertical turbulent exchange coefficient 19 th Congress of Mechanics 26 th August 2009 A.I.Sukhinov, E.V. Alexeenko, A.E.Chistyakov, B. Roux, P.G. Chen, S. Meule

Modeling of turbulence as an important mechanism in shallow water basins Turbulence in shallow water basins plays important role in many processes of hydrodynamics such as: transport and mixing heat, salt, momentum and suspended and dissolved matter Turbulence in shallow water basins plays important role in many processes of hydrodynamics such as: transport and mixing heat, salt, momentum and suspended and dissolved matter Turbulent fluxes of material occur as a result of correlated, small-scale fluctuations in current velocity and the transport quantity itself Turbulent fluxes of material occur as a result of correlated, small-scale fluctuations in current velocity and the transport quantity itself

Shallow water basins Shallow water basins The Azov sea, South of Russia Length of water basin from the west to the east/ from the south to the north : 350 km / 250 km Maximum depth: 15 m Length of water basin from the west to the east/ from the south to the north : 19 km / 18 km Maximum depth: 9.2 m The Etang de Berre, South if France we are mainly interested by shallow water basins which can be roughly characterized by the condition: we are mainly interested by shallow water basins which can be roughly characterized by the condition: kh < 1 (2π h< λ), where -wave number of the wave, - height of the water column, - wave length. where k -wave number of the wave, h - height of the water column, λ - wave length. Average depth of the Azov sea is about 8 m, for Etang de Berre - 6 m, what correspond to wave length – 40m. According to satellite photos wave lengths are not more than this value.

Expeditions in the Lagoon Etang de Berre Three expeditions (20 Sept. 2006, 28 Sept and June 2008) was executed by REC of the South of Russia in cooperation with L3M/CNRS laboratory (the group of Prof. B. Roux) and SIBOJAI Environmental Service in the Etang de Berre and Etang de Bolmon. Three expeditions (20 Sept. 2006, 28 Sept and June 2008) was executed by REC of the South of Russia in cooperation with L3M/CNRS laboratory (the group of Prof. B. Roux) and SIBOJAI Environmental Service in the Etang de Berre and Etang de Bolmon. ADCP Workhorse 600 Sentinel Depth range 70 m. Depth range 70 m. Frequency 600 kHz. Frequency 600 kHz. Measure precision 0,25% Measure precision 0,25%

Numerical simulation of turbulent coefficient (two methods are considered) Pulsations of velocity components was spread out in Taylor series: 1) method of Monin: 2) method of Belotserkovskii: 2) method of Belotserkovskii: Decreasing of free surface level Coefficient (m 2 /s) 1-st method 2-nd method

Distributions of the coefficient of vertical turbulent exchange blue line –result of numerical simulation, red dash line – result of measurements Point 2Point 5Point 6 Parameterisation of Belotserkovskii was included as a module in Azov3d-model for calculation evolution of 3D currents in shallow water basins. Parameterisation of Belotserkovskii was included as a module in Azov3d-model for calculation evolution of 3D currents in shallow water basins. Results of modeling were compared with results of measurements during expedition in the lagoon Etang de Berre in September 2006 Results of modeling were compared with results of measurements during expedition in the lagoon Etang de Berre in September 2006 Coefficient (m 2 /s) Decreasing of free surface level

MARS3D boundary value problem for lagoon Etang de Berre MARS3D for Etang de Berre (Caronte inflow, EDF, Western Wind) vector fields (palette – square of module of horizontal velocity) Model of Mars3d adopted to shallow water basins and based on solving equations: Navier-Stokes equations +Boussinesq approximation + hydrostatic assumption for pressure + parameterization of turbulent viscosity + equations of thermodynamics calculation in σ-coordinate adopted to free surface and bottom vertical grid Barotropic flow Near free surface flow Near bottom flow

Evolution of general barotropic currents in the lagoon One day after the begining of simulation Two days after the begining of simulation Three days after the begining of simulation

Numerical vector fields superposed with results of expedition in September 2006 Qualitatively we have similar directions of currents in the place of the main vortex Qualitatively we have similar directions of currents in the place of the main vortex Vertical profiles of horizontal velocity components are similar with measurements in 4 control points (station - 2, 5, 6, 7) from 8. This result means, that we need to calibrate configuration and also to do more measurements for having data in more points of the lagoon Etang de Berre Vertical profiles of horizontal velocity components are similar with measurements in 4 control points (station - 2, 5, 6, 7) from 8. This result means, that we need to calibrate configuration and also to do more measurements for having data in more points of the lagoon Etang de Berre Measured currents near the free surface – red arrows, near the bottom – yellow arrows Mars3D currents near the free surface Mars3D currents near the bottom surface

Quantitative comparison of approaches of Mars3D with results of expedition With Belotserkivskii approximation With Prandt approximation With Mellor-Yamada approximation (2 eq.) near the free surface near the bottom

Application of model Mars3D with parameterization of vertical turbulent exchange Configuration of Mars3d with Belotsercovskii parameterizaton of vertical turbulent exchange was applied for research structure of currents in the lagoon Etang de Berre for understanding and solving ecological problem in this lagoon. Configuration of Mars3d with Belotsercovskii parameterizaton of vertical turbulent exchange was applied for research structure of currents in the lagoon Etang de Berre for understanding and solving ecological problem in this lagoon. After installation in the EDF-Channel hydroelectric- station, big volumes of fresh water are entering during last 50 years in the waters of the lagoon After installation in the EDF-Channel hydroelectric- station, big volumes of fresh water are entering during last 50 years in the waters of the lagoon This change affected ecology of the lagoon. This change affected ecology of the lagoon. There was a strong desalination during last 50 years and many aquatic plants disappeared near coastline There was a strong desalination during last 50 years and many aquatic plants disappeared near coastline

TIDE, WIND and EDF-inflow + parameterization of vertical turbulent exchange in one simulation Barotropic currents associated with fast propagating waves (tide waves) wind – mistral N-NW 5 m/s, EDF-inflow (200 m 3 /s)

Point of Berre (zoom) TIDE, WIND and EDF-inflow in one simulation Barotropic currents associated with fast propagating waves (tide waves) wind – mistral N-NW, EDF-inflow (200 m 3 /s) Point of Berre (zoom) TIDE, WIND and EDF-inflow in one simulation Barotropic currents associated with fast propagating waves (tide waves) wind – mistral N-NW, EDF-inflow (200 m 3 /s) Near the boundary where aquatic plants during last 50 years disappeared we can see intensive currents which could destroy flora of these places

Point of Berre superposition of barocurrents and zones of Zoosteres corresponding to data of 1944, 1992, 2004 (GIPREB) for NW-wind (mistral) Point of Berre superposition of barocurrents and zones of Zoosteres corresponding to data of 1944, 1992, 2004 (GIPREB) for NW-wind (mistral)

Simulation in the Point of Berre (resolution 1 m) Simulation in the Point of Berre (resolution 1 m) Bathymetry of the Point de Berre (1m resolution), received during expedition measurements in the June 2009 by GPS (CEREGE, Samuel Meulé )

Point of Berre currents in the layer near the bottom (20-40 cm from the bottom) Point of Berre currents in the layer near the bottom (20-40 cm from the bottom)