3-8 Warm Up Problem of the Day Lesson Presentation

Slides:



Advertisements
Similar presentations
Preview Warm Up California Standards Lesson Presentation.
Advertisements

Pre-Algebra 3-8 Squares and Square Roots Warm Up Simplify
Algebra 9.1 Square Roots I will use the inverse of perfect squares to find approximate values of square roots. I will use square roots to evaluate radical.
Finding Square Roots 3.9.
Course Squares and Square Roots Warm Up Simplify
3-8 Warm Up Problem of the Day Lesson Presentation
Squares and Square Roots
HW # 48- p. 194 # 1-37 odd Warm up Week 14, Day Two Simplify x 2 * y 7 * x -1 * y 3.
Squares and Square Roots Students will be able to find square roots. Students will describe in writing what is meant by a perfect square. 4-5 Warm Up Warm.
Course Estimating Square Roots 4-6 Estimating Square Roots Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson.
Course Estimating Square Roots Warm Up Find the two square roots of each number. Evaluate each expression. 12
Evaluating Algebraic Expressions 4-6Squares and Square Roots NS2.4 Use the inverse relationship between raising to a power and extracting the root of a.
Find the two square roots of each number.
4.1 Exponents, p168. Find the product │ –7 –7 –7│ = (8) = 4. ÷ (8) = (-6) ⁴ = (–6) (–6) (–6) ● (-6) = -6 ⁴ = –1 ( ● 6.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Square Roots and Real Numbers
Page 142 & Spiral Review Answers
Squares and Square Roots
Evaluating Algebraic Expressions 4-6Squares and Square Roots NS2.4 Use the inverse relationship between raising to a power and extracting the root of a.
Squares and Square Roots 4-5 Warm Up on warm up paper: Homework Textbook 7.1 pg 292 # 1-3, 9 – 13, Solve and graph 2x - 3 > 19 Use order of operations.
Evaluating Algebraic Expressions 4-6Squares and Square Roots Math humor: Why wouldn’t the tree fit in the round pot? Why wouldn’t the tree fit in the round.
Squares and Square Roots
Evaluating Algebraic Expressions 4-6Squares and Square Roots Warm Up Warm Up Lesson Presentation Lesson PresentationPreview.
Squares and Square Roots. Vocabulary Square root- A number that when multiplied by itself forms a product. Principal square root- the nonnegative square.
4.6/4.7 Squares and Square Roots/Estimating Square Roots, p192/96 Warm Up Simplify = = = = = NS2.4 Use the inverse.
Squares and Square Roots 4-5 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Warm Up Simplify
Course Estimating Square Roots 4-6 Estimating Square Roots Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson.
Squares and Square Roots 3-5 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
12.1 Squares and Square Roots Thursday, March 1, 2007.
4.6/4.7 Squares and Square Roots/Estimating Square Roots, p192/96 Warm Up Simplify = = = = = NS2.4 Use the inverse.
Page 148 #1-13 ANSWERS Pre-Algebra 3-9 Finding Square Roots Student Learning Goal Chart Lesson Reflections 3-9.
3-6 Estimating Square Roots Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Course Estimating Square Roots Warm Up Find the two square roots of each number. Evaluate each expression. 12
Solving Quadratic Equations by Using Square Roots 8-7
3-9 Finding Square Roots Warm Up Problem of the Day
Solving Quadratic Equations by Using Square Roots 8-7
9/8/17 Squares and Square Roots Pre-Algebra.
3-9 Finding Square Roots Warm Up Problem of the Day
3-9 Finding Square Roots Warm Up Problem of the Day
Squares and Square Roots
Preview Warm Up California Standards Lesson Presentation.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Estimating Square Roots
Warm Up Find each square root. Solve the equation. 3. 2x – 40 = 0 1.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Squares and Square Roots
Square Roots and Real Numbers
Square Roots and Real Numbers
Square Roots and Real Numbers
Find the two square roots of each number.
Warm Up Simplify
Warm Up Simplify
Learn to find square roots.
to estimate square roots to a given number of decimal places and
Square Roots and Real Numbers
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Solving Quadratic Equations by Using Square Roots 9-7
1-3 Square Roots Warm Up Lesson Presentation Lesson Quiz
Solving Quadratic Equations by Using Square Roots 8-7
Solving Quadratic Equations by Using Square Roots 8-7
1-3 Square Roots Warm Up Lesson Presentation Lesson Quiz
3-8 Warm Up Problem of the Day Lesson Presentation
Solving Quadratic Equations by Using Square Roots 8-7
3-9 Finding Square Roots Warm Up Problem of the Day
Warm Up Simplify
Solving Quadratic Equations by Using Square Roots 8-7
Square Roots and Real Numbers
Solving Quadratic Equations by Using Square Roots 8-7
Warm Up Simplify
Presentation transcript:

3-8 Warm Up Problem of the Day Lesson Presentation Squares and Square Roots Warm Up Problem of the Day Lesson Presentation Pre-Algebra

Pre-Algebra 3-8 Squares and Square Roots Warm Up Simplify. 1. 52 2. 82 25 64 3. 122 4. 152 144 225 5. 202 400

Problem of the Day A Shakespearean sonnet is a poem made up of 3 quatrains (4 lines each), and a couplet (2 lines). Each line is in iambic pentameter (which means it has 5 iambic feet). So, how many iambic feet long is a Shakespearean sonnet? 70

to estimate square roots to a given number of decimal places and Squares and Square Roots Learning Target: I will be able to find square roots to estimate square roots to a given number of decimal places and solve problems using square roots.

Vocabulary principal square root perfect square

Think about the relationship between the area of a square and the length of one of its sides. area = 36 square units side length = 36 = 6 units Taking the square root of a number is the inverse of squaring the number. 62 = 36 36 = 6 Every positive number has two square roots, one positive and one negative. One square root of 16 is 4, since 4 • 4 = 16. The other square root of 16 is –4, since (–4) • (–4) is also 16. You can write the square root of 16 as ±4, meaning “plus or minus” 4.

When you press the key on a calculator, only the nonnegative square root appears. This is called the principal square root of the number. + 16 = 4 – 16 = –4 The numbers 16, 36, and 49 are examples of perfect squares. A perfect square is a number that has integers as its square roots. Other perfect squares include 1, 4, 9, 25, 64, and 81. –49 is not the same as – 49. A negative number has no real square root. Helpful Hint

Additional Example: 1 Finding the Positive and Negative Square Roots of a Number Find the two square roots of each number. A. 49 49 = 7 7 is a square root, since 7 • 7 = 49. 49 = –7 – –7 is also a square root, since –7 • –7 = 49. B. 100 100 = 10 10 is a square root, since 10 • 10 = 100. 100 = –10 – –10 is also a square root, since –10 • –10 = 100. C. 225 225 = 15 15 is a square root, since 15 • 15 = 225. 225 = –15 – –15 is also a square root, since –15 • –15 = 225.

Try This: Example 1 Find the two square roots of each number. A. 25 25 = 5 5 is a square root, since 5 • 5 = 25. 25 = –5 – –5 is also a square root, since –5 • –5 = 25. B. 144 144 = 12 12 is a square root, since 12 • 12 = 144. 144 = –12 – –12 is also a square root, since –12 • –12 = 144. C. 289 17 is a square root, since 17 • 17 = 289. 289 = 17 289 = –17 – –17 is also a square root, since –17 • –17 = 289.

Additional Example 2: Application A square window has an area of 169 square inches. How wide is the window? Find the square root of 169 to find the width of the window. Use the positive square root; a negative length has no meaning. 132 = 169 So 169 = 13. The window is 13 inches wide.

Switch to lesson about finding square roots after this slide Try This: Example 2 A square shaped kitchen table has an area of 16 square feet. Will it fit through a van door that has a 5 foot wide opening? Find the square root of 16 to find the width of the table. Use the positive square root; a negative length has no meaning. 16 = 4 So the table is 4 feet wide, which is less than 5 feet. The table will fit through the door. Switch to lesson about finding square roots after this slide

Additional Example 3: Evaluating Expressions Involving Square Roots Evaluate the expression. A. 3 36 + 7 3 36 + 7 = 3(6) + 7 Evaluate the square root. = 18 + 7 Multiply. = 25 Add. B. 21 – 5 + 9 Evaluate the expression under the square root symbol. 21 – 5 + 9 = 16 + 9 = 4 + 9 Evaluate the square root. = 13 Add.

Try This: Example 3 Evaluate the expression. A. 2 25 + 4 2 25 + 4 = 2(5) + 4 Evaluate the square root. = 10 + 4 Multiply. = 10 Add. Evaluate the expression under the square root symbol. B. 41 – 5 + 5 41 – 5 + 5 = 36 + 5 Evaluate the square root. = 6 + 5 Add. = 11

Lesson Quiz Find the two square roots of each number. 1. 81 2. 2500 Evaluate each expression. 3. 3 16 + 1 4. 7 9 – 2 49 ±9 ±50 13 7 5. Ms. Estefan wants to put a fence around 3 sides of a square garden that has an area of 225 ft2. How much fencing does she need? 45 ft