Joerg F. Hipp, Andreas K. Engel, Markus Siegel  Neuron 

Slides:



Advertisements
Similar presentations
Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention Markus Siegel, Tobias H. Donner, Robert Oostenveld, Pascal.
Advertisements

Building Better Models of Visual Cortical Receptive Fields
Volume 63, Issue 3, Pages (August 2009)
Volume 46, Issue 5, Pages (June 2005)
Disrupted Neural Synchronization in Toddlers with Autism
Volume 60, Issue 4, Pages (November 2008)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Volume 87, Issue 4, Pages (August 2015)
Volume 77, Issue 5, Pages (March 2013)
Rei Akaishi, Kazumasa Umeda, Asako Nagase, Katsuyuki Sakai  Neuron 
GABAergic Modulation of Visual Gamma and Alpha Oscillations and Its Consequences for Working Memory Performance  Diego Lozano-Soldevilla, Niels ter Huurne,
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
Rachel Ludmer, Yadin Dudai, Nava Rubin  Neuron 
Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks  Peter J. Uhlhaas, Wolf Singer 
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Perceptual Echoes at 10 Hz in the Human Brain
Volume 64, Issue 4, Pages (November 2009)
Volume 83, Issue 3, Pages (August 2014)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Volume 89, Issue 6, Pages (March 2016)
Volume 76, Issue 5, Pages (December 2012)
Volume 89, Issue 2, Pages (January 2016)
Volume 63, Issue 3, Pages (August 2009)
Volume 74, Issue 5, Pages (June 2012)
An Optimal Decision Population Code that Accounts for Correlated Variability Unambiguously Predicts a Subject’s Choice  Federico Carnevale, Victor de Lafuente,
Complementary Roles for Primate Frontal and Parietal Cortex in Guarding Working Memory from Distractor Stimuli  Simon Nikolas Jacob, Andreas Nieder  Neuron 
Activity in Both Hippocampus and Perirhinal Cortex Predicts the Memory Strength of Subsequently Remembered Information  Yael Shrager, C. Brock Kirwan,
Jason Samaha, Bradley R. Postle  Current Biology 
Roman F. Loonis, Scott L. Brincat, Evan G. Antzoulatos, Earl K. Miller 
Feature- and Order-Based Timing Representations in the Frontal Cortex
Volume 79, Issue 4, Pages (August 2013)
Brett L. Foster, Vinitha Rangarajan, William R. Shirer, Josef Parvizi 
Aryeh Hai Taub, Rita Perets, Eilat Kahana, Rony Paz  Neuron 
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
The Generality of Parietal Involvement in Visual Attention
Adaptive Training Diminishes Distractibility in Aging across Species
Volume 76, Issue 2, Pages (October 2012)
Jianing Yu, David Ferster  Neuron 
Gamma and Beta Bursts Underlie Working Memory
Volume 45, Issue 4, Pages (February 2005)
Peter Kok, Janneke F.M. Jehee, Floris P. de Lange  Neuron 
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Negative BOLD Differentiates Visual Imagery and Perception
Distributed Neural Systems for the Generation of Visual Images
BOLD fMRI Correlation Reflects Frequency-Specific Neuronal Correlation
Volume 63, Issue 5, Pages (September 2009)
Negative BOLD Differentiates Visual Imagery and Perception
Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka  Neuron 
Volume 80, Issue 4, Pages (November 2013)
Memory: Enduring Traces of Perceptual and Reflective Attention
Neural Predictors of Purchases
Rei Akaishi, Kazumasa Umeda, Asako Nagase, Katsuyuki Sakai  Neuron 
Josef Parvizi, Anthony D. Wagner  Neuron 
Georgia G. Gregoriou, Stephen J. Gotts, Robert Desimone  Neuron 
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Volume 75, Issue 5, Pages (September 2012)
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Volume 76, Issue 4, Pages (November 2012)
The Normalization Model of Attention
Beta and Gamma Rhythms Go with the Flow
Does Neuronal Synchrony Underlie Visual Feature Grouping?
Volume 27, Issue 3, Pages (February 2017)
Sébastien Marti, Jean-Rémi King, Stanislas Dehaene  Neuron 
Arielle Tambini, Nicholas Ketz, Lila Davachi  Neuron 
Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex  Han Lee, Gregory V. Simpson,
Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay
Similarity Breeds Proximity: Pattern Similarity within and across Contexts Is Related to Later Mnemonic Judgments of Temporal Proximity  Youssef Ezzyat,
Volume 50, Issue 4, Pages (May 2006)
Human Posterior Parietal Cortex Flexibly Determines Reference Frames for Reaching Based on Sensory Context  Pierre-Michel Bernier, Scott T. Grafton  Neuron 
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Presentation transcript:

Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception  Joerg F. Hipp, Andreas K. Engel, Markus Siegel  Neuron  Volume 69, Issue 2, Pages 387-396 (January 2011) DOI: 10.1016/j.neuron.2010.12.027 Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Behavioral Task On each trial, subjects fixated a central cross while two moving bars approached each other, overlapped, and diverged again (total duration, 1.52 s). At the moment of overlap (t = 0 s), a click-sound was played (duration, 0.02 s). The stimulus was either perceived as two bars passing each other (pass) or bouncing off each other (bounce). Subjects reported their percept via button-press (left/right thumb) after fixation cross offset (0.76 s after stimulus offset; counterbalanced percept-response mapping across subjects). Neuron 2011 69, 387-396DOI: (10.1016/j.neuron.2010.12.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 Local Neural Population Activity (A) Power response during stimulation (−0.25 to 0.25 s) relative to the prestimulus baseline in the theta (4–8 Hz), alpha (8–16 Hz), beta (16–32 Hz), low gamma (32–64 Hz), and high gamma (64–128 Hz) bands. Responses are visualized on the standard MNI-brain viewed from the top back (see Experimental Procedures and Figure S1). (B) Power response relative to prestimulus baseline resolved in time and frequency for an occipito-parietal region of interest. The region of interest is visualized on the right; CS: central sulcus. Neuron 2011 69, 387-396DOI: (10.1016/j.neuron.2010.12.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Perception-Related Beta-Synchrony Network (A) Spatial localization of cortical regions engaged in the network. For each cortical location, the color shows for how long, across which frequency-range, and to how many other locations coherence was increased for bounce and pass trials relative to baseline (CS: central sulcus). (B) Bottom left: Spectro-temporal coherence profile of the network that displays between how many locations coherence was increased at a given time and frequency. Top and right: Corresponding temporal and spectral coherence profiles. The spectral profile ranged from 15–23 Hz (full width at half maximum, FWHM). (C) Coherence structure between the seven clusters forming the beta-network (stimulation versus baseline). Line-width represents relative coherence strength. 1, frontal cortex; 2, posterior parietal cortex; 3, lateral occipitotemporal cortex; 4, medial occipital cortex. (D) Coherence response relative to prestimulus baseline for bounce and pass percepts within the beta-network (mean ± SEM). (E) Structure of difference in coherence between bounce and pass percepts. Line-width represents relative coherence strength. (F) Power response relative to prestimulus baseline for bounce and pass percepts within the beta-network (mean ± SEM). Neuron 2011 69, 387-396DOI: (10.1016/j.neuron.2010.12.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Perception-Related Gamma-Synchrony Network (A) Spatial localization of cortical regions engaged in the network. For each cortical location, the color shows for how long, across which frequency-range, and to how many other locations coherence was increased for bounce relative to pass trials (CS: central sulcus). (B) Bottom left: Spectro-temporal coherence profile of the network that displays between how many locations coherence was increased at a given time and frequency. Top and right: Corresponding temporal and spectral coherence profiles. The spectral profile ranged from 74 to 97 Hz (FWHM). (C) Coherence response relative to prestimulus baseline for bounce and pass percepts within the gamma-network (mean ± SEM). (D) Power response relative to prestimulus baseline for bounce and pass percepts within the gamma-network (mean ± SEM). Neuron 2011 69, 387-396DOI: (10.1016/j.neuron.2010.12.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 5 Synchronization in the Gamma-Network Reflects Cross-Modal Bias (A) Behavioral data. When the audiovisual stimulus was presented, subjects more often perceived the bars as bouncing compared to the visual-only control stimulus (mean ± SEM). (B) Correlation between the subjects' percept-specific coherence in the gamma network (bounce-pass coherence) and the individual cross-modal bias. (C) Correlation of coherence on bounce and pass trials relative to the average prestimulus baseline with the subjects' cross-modal bias. Neuron 2011 69, 387-396DOI: (10.1016/j.neuron.2010.12.027) Copyright © 2011 Elsevier Inc. Terms and Conditions