Unit 2. Day 5..

Slides:



Advertisements
Similar presentations
Chapter 3, Section 2 Checking Accounts.
Advertisements

Adding/Subtracting Fractions (like denominators) Adding/Subtracting Fractions (unlike denominators) Adding/Subtracting Decimals Multiplying/Dividing Fractions.
Lesson 5-2 Pages Rational Numbers Lesson Check 5-1.
Math – Adding and Subtracting Fractions, Mixed Number, and Rational Expressions 1.
Multiplying With Scientific Notation (3.8  102)  (5  104) = 1.) Change the order of the factors. 2.) Multiply and use the rules for exponents 3.) Make.
Unit 2 Quiz Review Ch. 4 Lessons 1— How do you write a decimal as a fraction?
COURSE 2 LESSON Find , or 4 Estimate 21 Add the fractions. Add the whole numbers = Write.
Repeating decimals – How can they be written as fractions? is a rational number.
Addition and Subtraction: Unlike Denominators  Mr. Peter Richard Is the Common Denominator needed in order to learn this Lesson!
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Like fractions Adding unlike fractions.
Aims: To be to be able to classify types of numbers To be able to write a surd in its simplest form To be able to add, subtract and multiply surds SURDS.
Lesson 5.2 Adding and Subtracting Mixed Numbers 11/30/09.
Do you remember how to change from a mixed number to an improper fraction? = 11 2 = 30 7 = 52 5 =
LESSON 11-1 Posting to an Accounts Payable Ledger
LESSON 11-1 Posting to an Accounts Payable Ledger
Rational Numbers Adding Like Fractions
5-2 Fractions and Decimals
Adding and Subtracting Fractions
Unit 2. Day 4..
Fractions, Decimals and Mixed Numbers
In this lesson you will learn how to add and subtract mixed numbers by grouping the problem into wholes and fractions and by re-naming the sum or difference.
Unit 2. Day 1..
Warm Up Change the following to a mixed number in simplest form.
“Day B” November 2, :51 - 8:51 Exploratory 8:53 - 9:53
Unit 2. Day 10..
Unit 2. Day 1..
Opening Activity Complete the following problems in your spiral on your “Multiplying Positive & Negative Integers” page. Write both the expression.
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Lesson 5.1 How do you write fractions as decimals?
Unit 1. Day 4..
Unit 1. Day 7..
Unit 3. Day 2..
Unit 2. Day 7..
“Day E” September 14, :01 - 9:01 Math 9: :03 Science
Unit 2. Day 6..
Unit 2. Day 5..
Unit 3. Day 1..
What is today’s learning objective?
Unit 2. Day 4..
Unit 2. Day 4..
Unit 3. Day 22..
Unit 2. Day 11..
Unit 2. Day 7..
Adding & Subtracting Decimals
Add or Subtract? x =.
LESSON 11-1 Posting to an Accounts Payable Ledger
Posting to an Accounts Receivable Ledger
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 13..
Unit 2. Day 8..
Unit 2. Day 12..
LESSON 11-1 Posting to an Accounts Payable Ledger
Adding and Subtracting Fractions
LESSON 11-1 Posting to an Accounts Payable Ledger
Quest for Understanding
LESSON 11-1 Posting to an Accounts Payable Ledger
Fractions With Like Denominators
Unit 2 Chapter 3 Real Numbers
Posting to an Accounts Receivable Ledger
I can add and subtract like fractions at least at 80% proficiency.
Posting to an Accounts Receivable Ledger
Posting to an Accounts Receivable Ledger
I can add and subtract mixed numbers at least at 80% proficiency.
Adding and Subtracting Mixed Numbers
2-3 Adding and Subtracting Rational Numbers Warm Up Problem of the Day
Presentation transcript:

Unit 2. Day 5.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Adding & Subtracting Rational Numbers 7.NS.A.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers (fractions)

Today’s Lesson Add/subtract: Mixed Numbers Add/Subtract: Decimals Add/subtract: Mixture of fractions/decimals

Example A: Add or subtract. Write in simplest form. 5 5 6 −7 1 2 5 5 6 7 1 2 35 6 − 45 6 − 5 3 35 6 15 2 −10 − 2∙5 − = = 6 = = 2∙3 6 2 −1 2 3 15 2 45 6 35 6 35 6   : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 64 , 60 : 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20

Example B*: Add or subtract. Write in simplest form. 6 3 5 −9 1 10 6 3 5 9 1 10 33 5 91 10 66 10 − 91 10 −25 − 5 2 −5∙5 − = = 10 = = 5 10 2∙5 −2 1 2 66 10 91 10 91 10 33 5   : 5 , 10 , 15 , 20 : 10 , 20

Today’s Lesson Add/subtract: Mixed Numbers Add/Subtract: Decimals Add/subtract: Mixture of fractions/decimals

Example C: + 5.8−8.7= − − 7 5 . 8 1 8 . 7 − − 8 . 7 5 . 8 2 . 9 2 . 9

Example D*: 1.8−7.5 1.89−7.5 Example E*: Example F*: −6.27−0.975

Example D*: + 1.8−7.5= − − 6 1 . 8 1 7 . 5 − − 7 . 5 1 . 8 5 . 7 5 . 7

Example E*: + 1.89−7.5= − − 1 6 4 1 . 8 9 1 7 . 5 − − 7 . 5 1 . 8 9 5 5 . 6 1 . 6 1 1 . 8 9 7 . 5 − − 7 . 5 1 . 8 9

Example F*: −6.27−0.975= − − − 1 1 1 1 6 . 2 7 0 . 9 7 5 + + 0 . 9 7 5 6 . 2 7 7 . 7.245 2 4 5 7 7.245 . 2 4 5

Example G*: −0.05−0.45 0.003+ −0.301 Example H*:

Example G: − −0.05−0.45= − − 1 1 0 . 0 5 0 . 4 5 0 . 4 5 0 . 0 5 + + 0.5 . 5 0.5 . 5

Example H*: + 0.003+ −0.301 = − − 2 9 1 0 . 3 0 1 1 0 . 0 0 3 − − 0 . 0 0 3 0 . 3 0 1 0.298 . 2 9 8

Example I*: Mr. Jordan did not realize his checking account had a balance of $200 when he used his debit card for a $317.25 purchase. What is his checking account balance after the purchase? − 317.25 = 200.00 − 117.25 317 . 2 5 200 . 0 0 − 1 1 7 . 2 5

Today’s Lesson Add/subtract: Mixed Numbers Add/Subtract: Decimals Add/subtract: Mixture of fractions/decimals

Q: What is a rational number? A: A number that can be written as a fraction 𝑝 𝑞 − 5 7 − 5 7 2 3 2 3 −4 5 6 −4 5 6 0.875 0.875 −16. 3 −16. 3 Today: + +

−2.4 + 3 4 −2 1 2 3 4 − 2 1 2 Example --: −2.4 + 3 4 −2 1 2 3 4 − 2 1 2 −2.4 −2.4 Which way is better? − 24 10 3 4 − 5 2 + −2.4 + 0.75 −2.5 −2.5 − 20 48 20 15 − 20 50 + − −48+15−50 20 − −50 20 −33 1 1 3 1 1 2 . 4 1 . 6 5 − 0 . 7 5 + 2 . 5 −4 3 20 −83 1 1 . 6 5 . 6 5 . 20 = 4 4.15 1 5

−0.8 + 2 3 2 3 Example -: −0.8 − 8 10 2 3 + − 30 24 30 20 + −24+20 30 −4 −2 15 = 30 =

Example -: In my opinion, fractions are preferable … as this problem demonstrates. −0.8 + 2 3 2 3 −0.8 −0.8 + 0.6666666666666… − 7 1 0 . 8 −2 15 − = 0 . 6 7 0 . 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 −0.1 3 0.13 . 1 3

Example J*: + −1 1 6 +4.5 − −2 5 6 −1 1 6 2 5 6 4.5 − 7 6 45 10 17 6 + + − 30 35 30 135 85 30 + + −35+135+85 30 6 1 6 37 6 185 + 85 30 100 = = 30 =

Groups

−5.2− −3.1 +5.2 Example K: Example L: Example M: Example N: 32 + −12 7 8 Example L: 3 1 6 +20.3 − −5 5 6 Example M: 16 20 − −1.8 − 4 5 Example N: S.51 Exercise 2

+ Example K*: −5.2− −3.1 +5.2 3.1

Example L*: 32 + −12 7 8 −12 7 8 32 32 1 − 103 8 8 256 − 8 103 256−103 8 153 8 19 1 8 =

+ + 9 29.3 + + Example M*: 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 5 5 6 3 1 6 5 5 6 20.3 20.3 19 6 203 10 35 6 + + 19 6 35 6 + 30 95 30 609 175 30 + + 6 54 95+609+175 30 9 + 879 30 293 10 29 3 10 = = = 29.3 29.3

Example N*: + 16 20 − −1.8 − 4 5 16 20 − 4 5 1.8 4 5 4 5 + 18 10 − 4 5 18 10 − 4 5 18 10 + 10 8 18 −8 10 10 + + 9 5 1.8 8+18−8 10 1 4 5 26 −8 10 9 5 1 4 5 18 = 10 = =