Simulation of Condensed Matter Physics with ultrocold atoms

Slides:



Advertisements
Similar presentations
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Advertisements

1 Classical Interpretations of Kapitza-Dirac Effect 司徒树平中山大学理工学院物理系 July 2006, Lanzhou.
Emergent Majorana Fermion in Cavity QED Lattice
Durham University – Atomic & Molecular Physics group
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Dark Energy Perturbations 李明哲 南京大学物理学院 中国科技大学交叉学科理论研究中心 合肥.
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Quantum fermions from classical statistics. quantum mechanics can be described by classical statistics !
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Guillermina Ramirez San Juan
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Berry phase effects on Electrons
Measuring quantum geometry From superconducting qubits to spin chains Michael Kolodrubetz, Physics Department, Boston University Theory collaborators:
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Qiang Gu (顾 强) Cold atoms in the synthetic magnetic field Department of Physics, University of Science and Technology Beijing (北京科技大学 物理系) KITPC, Beijing,
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Quantum Simulation Dieter.
10. The Adiabatic Approximation 1.The Adiabatic Theorem 2.Berry’s Phase.
Berry Phase Effects on Electronic Properties
1 Dorit Aharonov Hebrew Univ. & UC Berkeley Adiabatic Quantum Computation.
1 Manipulation of Artificial Gauge Fields for Ultra-cold Atoms for Ultra-cold Atoms Shi-Liang Zhu ( Shi-Liang Zhu ( 朱 诗 亮 Laboratory.
Unitary engineering of two- and three-band Chern insulators
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Topological Insulators
宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 南昌 中国高能物理学会.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Topological physics with a BEC: geometric pumping and edge states Hsin-I Lu with Max Schemmer, Benjamin K. Stuhl, Lauren M. Aycock, Dina Genkina, and Ian.
K. Y. Bliokh, A. Niv, V. Kleiner, E. Hasman Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel Nonlinear.
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Jiří Minář Centre for Quantum Technologies
第9届QCD相变和重离子碰撞物理研讨会,杭州
Quantum Geometric Phase
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Tunable excitons in gated graphene systems
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Quantum Phase Transition of Light: A Renormalization Group Study
Using Quantum Means to Understand and Estimate Relativistic Effects
Qian Niu 牛谦 University of Texas at Austin 北京大学
Quantum mechanics II Winter 2011
Gauge structure and effective dynamics in semiconductor energy bands
Adiabatic Green’s function technique and
Atomic BEC in microtraps: Heisenberg microscopy of Zitterbewegung
Zhejiang Normal University
Quantum entanglement measures and detection
Quantum mechanics II Winter 2011
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Internal tunneling effect in an entangled cold atom condensate
Geometric Phase in composite systems
Some aspects of 1D Bose gases
Effect of equilibrium phase transition on multiphase transport in relativistic heavy ion collisions 喻 梅 凌 华中师范大学粒子物理研究所 2019/2/24 第十届全国粒子物理大会 桂林.
Quantum computation using two component Bose-Einstein condensates
The p-wave scattering of spin-polarized Fermi gases in low dimensions
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Two atoms in a double well: Exact solution with a Bethe ansatz
梁伟红 (广西师范大学) 2015强子物理与核物理前沿研讨会,中国科学院大学,2015年1月10-11日.
郑 公 平 河南师范大学 第五届全国冷原子物理和量子信息青年学者学术讨论会
Berry phase in graphene: a semi-classical perspective
Quantum Phases Beyond Single-atom Condensation
Computational approaches for quantum many-body systems
Presentation transcript:

Simulation of Condensed Matter Physics with ultrocold atoms 朱诗亮 (Shi-Liang Zhu) 广州 华南师范大学物理与电信工程学院       shilzhu@yahoo.com.cn 全国冷原子物理和量子信息青年学者学术讨论会 山西 太原 2007,7,2-6

Outlines Background Quantum simulation; Ultracold atoms 2 Spin-Hall effects 3 Relativistic Dirac fermions

1 Spin-Hall effects for cold atoms in a light-induced gauge field S. L. Zhu, H. Fu, C. J. Wu, S. C. Zhang, and L. M. Duan, PRL 97,240401 (2006). 傅浩 (FOCUS center and MCTP, University of Michigan 吴从军(C.J.Wu) (KITP, UC, Santa Barbara) 张首晟(S. C. Zhang) (Stanford University) 段路明(L. M. Duan) (FOCUS center and MCTP, University of Michigan) 2 Simulation and detection of Dirac fermions with cold atoms in an optical lattice S. L. Zhu, B. Wang, and L. M. Duan, PRL98, 260402 (2007) 王伯根 (南京大学) 段路明(Univ. Mich.)

Simulate a quantum system with a classical computer is very hard Simulate a quantum system by a quantum computer accurately control every basic operation 2 Simulate a quantum system by a quantum simulator Quantum simulator with ultrocold atoms

Quantum computation: a universal set of quantum gates Two noncommutable single-qubit gates One nontrivial two-qubit gate If is a product state is an entangled state then U is nontrivial C U U T A general U can be decomposed into single-qubit rotations and a nontrivial two-qubit gate

1 The parameters of a system are well-controllable 2 measurable Simulator System

Atoms at optical lattices Bose-Hubbard Hamiltonian D.Jaksch et al (1998) M. Greiner et al. , Nature (2002) You can control almost all aspects of the periodic structure and the interactions between the atoms

Cold atomic systems Quantum information Ultra cold astoms Many-body system (condensed matter physics) Few-body system Field theories

Real space or momentum distributions of the atoms

Spin Hall Effects 1 Gauge fields in atomic systems 2 Spin Hall effects and Atomic spin Hall effects 3 Detection 4 Conclusions

Hall effects B J + + + + + + + + + + - - - - - - - - - - - - - - - - 1980 1982

Spin Hall effect J J. E. Hirsch, PRL 83, 1834 (1999); S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003); J. Sinova et al, PRL92, 126603 (2004); Y. K. Kato et al Science 2004; Y. K. Kato et al Science

Effective magnetic fields G. Juzeliunas PRL (2004) G. Juzeliunas et al PRA (2006)

Introduction: geometric phase The Aharonov-Bohm effect The adiabatic approximation The Berry phase The Aharonov-Anandan phase

The Aharonov-Bohm effect Aharonov and Bohm 1959 q q solenoid The charge never “touches” field The fringe shift is gauge invariant The phase shift depends only on the path integral

The adiabatic approximation H dependents on a set of parameters Changed adiabatically The adiabatic theorem: If the system is initially in a non-degenerate energy eigenstate, it will remain in the corresponding eigenstate during the whole adiabatic evolution.

The Berry phase M. V. Berry (1984) A closed path in parameter space: The initial state is one of energy eigenstates The final state differs from the initial one by a phase factor Where Dynamic phase Berry phase

The Berry phase Depends on the geometry of the trajectory in parameter space, not on rate of passage --- geometric phase Depends on basis |n> Gauge invariance is guaranteed by cyclic evolution May be detected by an interference experiment Berry curvature: Many application in physics

An example: A spin ½ in a magnetic field Parameter space The Bloch sphere Path by n(t) Path by unit B(t) Path by B(t) Berry phase –1/2 solid angle AA phase = 1/2 solid angle

Light-atom interaction Three-level L-type Atoms

Gauge field induced by laser-atom interactions Where Y obey the Schroding eq. with the effective Hamiltonian given by The vector potential The scalar potential F.Wilczek and A.Zee PRL 52,2111(1984)

Pseudo-spin in a gauge field B B

The configurations of the Raman laser beams: I G. Juzeliunas et al., Phys. Rev. A 73, 025602 (2006)

The configurations of the Raman laser beams: II

Spin currents g

Spin-dependent trajectories

Spin-dependent trajectories

Detection of the spin currents (spin separation) A Raman transition with an effective Hamiltonian After this Raman p-pulse, the initial different dressed spin states are mapped to different hyperfine levels, and the populations in different atomic hyperfine levels can be separately imaged

Quantum spin Hall effects Satisfies the Schrodinger eq. with the Hamiltonian where B D.J.Thouless et al, PRL (1982) B

Atomic spin Hall effects X. J. Liu et al (2006) 1 Interactions: Gross-Pitaevskii equations 2 Non-adiabatic effects

Conclusions We propose an experimental scheme to observe spin Hall effects with cold Atoms in a light induced gauge potential. Through numerical simulation, we demonstrated that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.

Simulation and detection of Dirac Fermions Condensed Matter Systems: Low velocity – non-relativistic Governed by Schrodinger equ. Relativistic Dirac Equ. Graphene: Single-layer carbon atoms G.W.Semenoff, PRL53,2449(1984)

Kitaev Model and its realization with cold atoms A. Kitaev, Ann Phys 321, 2 (2006) L.M.Duan et al PRL 91, 090402(2003)

Simulation and detection of Dirac Fermions

Single-component fermionic atoms in this hexagonal lattice

Roughly one atom per lattice cite and in the low energy density The Dirac Eq.

Real space or momentum distributions of the atoms time-of-flight imaging

Local density approximation The local density profile n(r) is uniquely determined by n(m)

The Bragg spectroscopy Lighe-atom interaction Hamiltonian:

Massless Dirac fermions: Non-relativistic case:

The Bragg spectroscopy

Conclusions We propose an experimental scheme to simulate and observe relativistic Dirac fermions with cold atoms By controlling the lattice anisotropy, massive and massless fermions can be observed and the quantum phase transition between them can be detected. Atomic density profile and the Bragg spectroscopy are powerful tools

Thank you for your attention S.L.Zhu acknowledges support by the State Key Program for Basic Research of China under No. (No. 2006CB921800), the NCET and NSFC under grant number 10674049 Thank you for your attention