Find: ρc [in] from load after 2 years

Slides:



Advertisements
Similar presentations
Start with your equation Move the # term to the other side, and leave a space Determine what HALF of the coefficient of X is Factor the left side Write.
Advertisements

Consolidation Theory Examples.
Session 9 – 10 MAT FOUNDATION
Settlement and Consolidation CHAPTER 4. §4 Settlement and Consolidation § 4.1 General § 4.2 Oedometer test § 4.3 Preconsolidation pressure § 4.4 Consolidation.
Kamal Tawfiq, Ph.D., P.E., F.ASCE
Example: Cc = 0.72 Void Ratio (e) Cs = 0.1 Po Log (p) Cc Cs Figure 1
FE: Geotechnical Engineering
Kamal Tawfiq, Ph.D., P.E., F.ASCE
For updated version, please click on
Consolidation Theories of Soils
Chapter 9 Section 2.
CHAPTER 4 SOIL STRESSES.
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: The Lightest I Beam
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: Fcr [lb/in2] Fcr E = 2.9 * 107 [lb/in2] fy = 36,000 [lb/in2]
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: Lightest I Beam fy=50,000 [lb/in2] unfactored axial
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Experiment # 6 Consolidation ASTM D 1883 Soil Mechanics Lab CE 350.
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Chapter 9 Section 2.
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
lectures Notes on: Soil Mechanics
Presentation transcript:

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Find the settlement from consolidation in inches from a load after 2 years. In this problem, Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] A load of 400 pounds per square feet is applied to a soil profile consisting of --- Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] a 6 foot thick layer of sand, Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] a 20 foot thick layer of clay Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] and a 4 foot thick layer of gravel. Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] We’ve also been provided various soil properties. [pause] Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] 2.25 2.50 C) 2.75 D) 3.00 γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] In this problem, we assume the clay is the only soil type which consolidates. Clay CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] γT=118 [lb/ft3] Gravel 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay So we begin by solving for the ultimate consolidation in the clay layer. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay The height of the clay layer is 20 feet. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay Since the clay is normally consolidated, CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay we’ll use 0.40 for our consolidation index. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] ? 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay Next, we’ll solve for the initial void ratio. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years γT= H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] ? 2 [ft] (SG+e) * γW γT=110 [lb/ft3] 20 [ft] γT= Clay Since the clay layer is saturated, we know the total unit weight can be determined from the specific gravity, void ratio and unit weight of water. 1+e CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years γT - γW γT= H*C σfinal ρc= Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] ? 2 [ft] (SG+e) * γW γT=110 [lb/ft3] 20 [ft] γT= Clay After solving for the void ratio --- 1+e CR=0.04 CC=0.40 normally consolidated SG * γW - γT CV=5 [ft2/year] e= γT - γW Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years γT - γW γT= H*C σfinal ρc= Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] ? 2 [ft] (SG+e) * γW γT=110 [lb/ft3] 20 [ft] γT= Clay and plugging in our known values, assuming the specific gravity is 2.70, 1+e CR=0.04 CC=0.40 2.70 normally consolidated SG * γW - γT CV=5 [ft2/year] e= 62.4 [lb/ft3] γT - γW Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years γT - γW γT= H*C σfinal ρc= Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] ? 2 [ft] (SG+e) * γW γT=110 [lb/ft3] 20 [ft] γT= Clay we find the initial void ratio to be 1.23. 1+e CR=0.04 CC=0.40 2.70 normally consolidated SG * γW - γT CV=5 [ft2/year] e= 62.4 [lb/ft3] γT - γW Grav γT=118 [lb/ft3] 4[ft] e=1.23

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] 1.23 γT=110 [lb/ft3] 20 [ft] Clay Now, all we have to solve for --- CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] 20 [ft] Clay is the initial and final vertical effective stress values. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 σ’i = Σ γ’ * d γT=110 [lb/ft3] 20 [ft] Clay Let’s evaluate a point in the middle of the clay layer, which would be at a total depth of 16 feet. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] We add the overburden stress from the unsaturated sand, CR=0.04 CC=0.40 +… normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] from the saturated sand, CR=0.04 CC=0.40 + 2 [ft] * (112-62.4) [lb/ft3] normally consolidated +… CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] Clay and from the top 10 feet of the clay later. CR=0.04 CC=0.40 + 2 [ft] * (112-62.4) [lb/ft3] normally consolidated +(10 [ft]) * (110-62.4) [lb/ft3] CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] Clay Our initial stress is 999 pounds per square feet, CR=0.04 CC=0.40 + 2 [ft] * (112-62.4) [lb/ft3] normally consolidated +(10 [ft]) * (110-62.4) [lb/ft3] CV=5 [ft2/year] σ’i,clay= 999 [lb/ft2] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] Clay and after adding the load of 400 pounds per square feet, CR=0.04 CC=0.40 + 2 [ft] * (112-62.4) [lb/ft3] normally consolidated +(10 [ft]) * (110-62.4) [lb/ft3] CV=5 [ft2/year] σ’i,clay= 999 [lb/ft2] Grav γT=118 [lb/ft3] 4[ft]

( ) ? Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] ? 1.23 γT=110 [lb/ft3] σ’i,= 4 [ft] * 106 [lb/ft3] 20 [ft] Clay our final stress is 1,399 pounds per square feet, CR=0.04 CC=0.40 + 2 [ft] * (112-62.4) [lb/ft3] normally consolidated +(10 [ft]) * (110-62.4) [lb/ft3] CV=5 [ft2/year] σ’i,clay= 999 [lb/ft2] Grav γT=118 [lb/ft3] σ’f,clay= 1,399 [lb/ft2] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 1,399 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] 1.23 999 [lb/ft2] γT=110 [lb/ft3] 20 [ft] Clay We update our settlement equation --- CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 1,399 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] 1.23 999 [lb/ft2] γT=110 [lb/ft3] ρc= 6.30 [in] 20 [ft] Clay to find the consolidation settlement is 6.30 inches. This is the maximum consolidation settlement which would occur, CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 1,399 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] 1.23 999 [lb/ft2] γT=110 [lb/ft3] ρc= 6.30 [in] 20 [ft] Clay if the soil had an infinite amount of time to consolidate. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Ultimate consolidation (given infinite time) Grav γT=118 [lb/ft3] 4[ft]

( ) Find: ρc [in] from load after 2 years H*C σfinal ρc= log Load=400 [lb/ft2] 20 [ft] 0.40 1,399 [lb/ft2] ( ) H*C σfinal ρc= 1+e σinitial log ‘ γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] 1.23 999 [lb/ft2] γT=110 [lb/ft3] ρc= 6.30 [in] 20 [ft] Clay We’ll call this the ultimate consolidation. This is the consolidation which is typically referred to in consolidation settlement problems, when time is not mentioned. CR=0.04 CC=0.40 ρult= 6.30 [in] normally consolidated CV=5 [ft2/year] Ultimate consolidation (given infinite time) Grav γT=118 [lb/ft3] 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay However, in this problem, were asked to find the consolidation settlement after 2 years. So, we already know the answer is between 0 and 6.30 inches. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] γT=110 [lb/ft3] 20 [ft] Clay The consolidation settlement after a certain time, equals the ultimate consolidation times the percent of consolidation which has occurred, U. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay We’ll call this ‘U’ value the ‘Average Degree of Consolidation’ which ranges from 0 and 100 percent. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay U is a function of big T, the ‘Time Factor,’ CR=0.04 CC=0.40 U = f ( T ) normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay And the Time Factor, is equal to, CR=0.04 CC=0.40 U = f ( T ) normally consolidated CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay the time rate of consolidation, which is sometimes called the consolidation coefficient, CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay times the time the soil has to consolidate, CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated 2 [yr] CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2

<100% ? Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay divided by the drainage distance, squared. CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated 2 [yr] CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2 ?

<100% ? Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay The drainage distance is the furthest distance a drop of water would have to travel to exit the consolidating layer. CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated 2 [yr] CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2 ?

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] 10 [ft] Clay Since our clay layer is doubly drained, the drainage distance is half the layer layer thickness, or, 10 feet. CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated 10 [ft] 2 [yr] CV=5 [ft2/year] cv * t T= Grav γT=118 [lb/ft3] 4[ft] (HD)2 10 [ft]

<100% Find: ρc [in] from load after 2 years ρult= 6.30 [in] Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand γT=112 [lb/ft3] 2 [ft] Average degree of consolidation 0% < <100% γT=110 [lb/ft3] 20 [ft] Clay Which makes our Time Factor equal to 0.10. [pause] CR=0.04 CC=0.40 U = f ( T ) 5 [ft2/yr] normally consolidated 2 [yr] CV=5 [ft2/year] cv * t T= =0.10 Grav γT=118 [lb/ft3] 4[ft] (HD)2 10 [ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] Clay Next we solve for our average degree of consolidation. CR=0.04 CC=0.40 normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay When T is less than about 0.285, the average degree of consolidation is equal to the square root of 4 times T, divided by PI, all times 100%. CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] Grav γT=118 [lb/ft3] 4[ft]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay When T is greater than about 0.285, the average degree of consolidation is this second equation. CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] If T>0.285± Then γT=118 [lb/ft3] U≈100-10{(1.781-T)/0.933}

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay For our problem, T equals 0.10, so we’ll use the first equation to solve for ‘U.’ CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] If T>0.285± Then γT=118 [lb/ft3] U≈100-10{(1.781-T)/0.933}

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay After 2 years, this 20 foot thick clay layer has consolidated 35.7% of it’s ultimate consolidation settlement. CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] U=35.7% Grav γT=118 [lb/ft3]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay --- CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] U=35.7% Grav γT=118 [lb/ft3]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay Or, 2.25 inches of settlement. CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] U=35.7% Grav γT=118 [lb/ft3] ρ2yr = 2.25 [in]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] 2.25 2.50 C) 2.75 D) 3.00 ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay Compared with our possible solutions, CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] U=35.7% Grav γT=118 [lb/ft3] ρ2yr = 2.25 [in]

Find: ρc [in] from load after 2 years Load=400 [lb/ft2] ρult= 6.30 [in] 2.25 2.50 C) 2.75 D) 3.00 ρ2yr = U * ρult γT=106 [lb/ft3] 4 [ft] Sand T=0.10 γT=112 [lb/ft3] 2 [ft] U = f ( T ) γT=110 [lb/ft3] 20 [ft] If T<0.285± Clay the answer is A. CR=0.04 CC=0.40 Then 4T U≈ *100% π normally consolidated CV=5 [ft2/year] U=35.7% Answer  A ρ2yr = 2.25 [in]

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ γ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘