M. Maraldi, C. Valero, K. Garikipati  Biophysical Journal 

Slides:



Advertisements
Similar presentations
A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis Biophysical Journal.
Advertisements

Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
The Importance of the Hook Region of the Cochlea for Bone-Conduction Hearing Namkeun Kim, Charles R. Steele, Sunil Puria Biophysical Journal Volume 107,
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Clamping Down on Tumor Proliferation
Young Min Rhee, Vijay S. Pande  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
Goran Žagar, Patrick R. Onck, Erik van der Giessen  Biophysical Journal 
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Effects of Geometric Parameters on Swimming of Micro Organisms with Single Helical Flagellum in Circular Channels  Alperen Acemoglu, Serhat Yesilyurt 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Guang-Kui Xu, Xi-Qiao Feng, Huajian Gao  Biophysical Journal 
Bipedal Locomotion in Crawling Cells
Lipid Bilayer Mechanics in a Pipette with Glass-Bilayer Adhesion
SAXS versus FRET: A Matter of Heterogeneity?
Torsional Behavior of Axonal Microtubule Bundles
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
Volume 107, Issue 11, Pages (December 2014)
Volume 112, Issue 6, Pages (March 2017)
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Nanopore Sequencing: Forcing Improved Resolution
Mechanochemical Symmetry Breaking in Hydra Aggregates
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 102, Issue 12, Pages (June 2012)
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 98, Issue 8, Pages (April 2010)
Fundamental Constraints on the Abundances of Chemotaxis Proteins
Propagation of Mechanical Stress through the Actin Cytoskeleton toward Focal Adhesions: Model and Experiment  Raja Paul, Patrick Heil, Joachim P. Spatz,
Volume 110, Issue 11, Pages (June 2016)
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Noise Underlies Switching Behavior of the Bacterial Flagellum
Emergent Global Contractile Force in Cardiac Tissues
Pattern Selection by Dynamical Biochemical Signals
Adaptive Response of Actin Bundles under Mechanical Stress
Volume 103, Issue 10, Pages (November 2012)
Volume 96, Issue 6, Pages (March 2009)
Bart Smeets, Maxim Cuvelier, Jiri Pešek, Herman Ramon 
Volume 109, Issue 1, Pages (July 2015)
Volume 105, Issue 1, Pages (July 2013)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Alexander Peyser, Dirk Gillespie, Roland Roth, Wolfgang Nonner 
Aurélie Gouron, Anne Milet, Helene Jamet  Biophysical Journal 
Volume 107, Issue 11, Pages (December 2014)
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Mechanical Control of Bacterial Cell Shape
Focal Adhesion Kinase Stabilizes the Cytoskeleton
Volume 97, Issue 5, Pages (September 2009)
Jonathan E. Hiorns, Oliver E. Jensen, Bindi S. Brook 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Joshua C. Chang, Yanli Liu, Tom Chou  Biophysical Journal 
Hossein Ahmadzadeh, Douglas H. Smith, Vivek B. Shenoy 
Integrin Molecular Tension within Motile Focal Adhesions
Volume 108, Issue 10, Pages (May 2015)
Dynamics of Mouth Opening in Hydra
Shape Transformations of Epithelial Shells
Modelling Toehold-Mediated RNA Strand Displacement
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
The Role of Network Architecture in Collagen Mechanics
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Rachel M. Abaskharon, Feng Gai  Biophysical Journal 
Prediction of Cell Alignment on Cyclically Strained Grooved Substrates
Simulating the Entropic Collapse of Coarse-Grained Chromosomes
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Quantitative Modeling and Optimization of Magnetic Tweezers
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Viscoplasticity Enables Mechanical Remodeling of Matrix by Cells
Presentation transcript:

A Computational Study of Stress Fiber-Focal Adhesion Dynamics Governing Cell Contractility  M. Maraldi, C. Valero, K. Garikipati  Biophysical Journal  Volume 106, Issue 9, Pages 1890-1901 (May 2014) DOI: 10.1016/j.bpj.2014.03.027 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Schematic representation of the model. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 System response map with no applied stretch. R is the region in which the stress fiber and the focal adhesion reach full development (robust SF & FA (stress fiber and focal adhesion) region). (Dashed curves) Iso-time contours of micropost coverage by the growing focal adhesion. R′ is the region in which focal adhesion translation causes stress fiber force relaxation to zero. The system collapses in regions FA-c and FA-c′ due to focal adhesion resorption (FA collapse regions), and in SF-c due to stress fiber resorption (SF collapse region). To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Time evolution of (a) force, P; (b) number of actin monomers in the stress fiber, Nsf; (c) positions of focal adhesion distal end, initially negative values, xdfa and proximal end, positive values, xpfa (dashed lines indicate the position of micropost edges); and (d) focal adhesion centroid position, x˜fa, for three different system initial configurations belonging to region R in Fig. 2. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Contour plots of the maximum contractile force P and of the focal adhesion resorption time t for configurations belonging, respectively, to regions R and FA-c of the map in Fig. 2. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 System response map for applied strain. Regions R and FA-c are modified from Fig. 2. The applied strain appears in parentheses in subregions of FA-c. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Time evolution of (a) force, P; (b) number of actin monomers in the stress fiber, Nsf; (c) positions of focal adhesion distal end, initially negative values, xdfa and proximal end, positive values, xpfa (dashed lines indicate the position of micropost edges); and (d) focal adhesion length, xˆfa, for the indicated applied strain. System initial configuration: x0sf = 18 μm; xˆfa0 = 0.520 μm. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 7 Chemical potentials as functions of the force P at (a) the focal adhesion distal end; (b) the focal adhesion proximal end; and (c) the stress fiber for the set of parameters listed in Table S1 in the Supporting Material. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 8 Time evolution of (a) stress fiber force P (solid line, blue online) and stress fiber critical force P1cr,sf (dashed shaded line, red online); (b) Nsf. System initial configuration: x0sf = 18 μm; xˆfa0 = 0.520 μm (see region R in Fig. 2). To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 9 Time evolution of (a) P (solid line, blue online) and focal adhesion critical force, Pdcr,fa (dashed shaded line, red online); (b) xˆfa. System initial configuration: x0sf = 36 μm; xˆfa0 = 0.800 μm (see region FA-c in Fig. 2). To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 10 The computed stress fiber force versus time compared with force on individual microposts from the work of Mann et al. (33). (a) Robust stress fiber-focal adhesion systems (see region R in Fig. 5). (b) Systems that suffer focal adhesion collapse (see region FA-c in Fig. 5). The strain of 0.06 is applied at 1800 s in both cases. To see this figure in color, go online. Biophysical Journal 2014 106, 1890-1901DOI: (10.1016/j.bpj.2014.03.027) Copyright © 2014 Biophysical Society Terms and Conditions