How Many Protein Sequences Fold to a Given Structure

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Volume 105, Issue 8, Pages (October 2013)
Volume 109, Issue 6, Pages (September 2015)
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 112, Issue 7, Pages (April 2017)
Volume 109, Issue 2, Pages (July 2015)
Volume 106, Issue 8, Pages (April 2014)
Dynamics of Active Semiflexible Polymers
Volume 90, Issue 1, Pages (January 2006)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Partially Assembled Nucleosome Structures at Atomic Detail
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
Edmond Chow, Jeffrey Skolnick  Biophysical Journal 
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Volume 114, Issue 1, Pages (January 2018)
Volume 96, Issue 2, Pages (January 2009)
Blind Test of Physics-Based Prediction of Protein Structures
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 110, Issue 11, Pages (June 2016)
Christian Rickert, Catherine Proenza  Biophysical Journal 
Greta Faccio, Stefan Salentinig  Biophysical Journal 
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
Ion Counting from Explicit-Solvent Simulations and 3D-RISM
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Volume 23, Issue 11, Pages (November 2015)
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Volume 107, Issue 8, Pages (October 2014)
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Ivan Coluzza, Daan Frenkel  Biophysical Journal 
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Volume 98, Issue 11, Pages (June 2010)
Yuliang Zhang, Yuri L. Lyubchenko  Biophysical Journal 
Rita Pancsa, Daniele Raimondi, Elisa Cilia, Wim F. Vranken 
Phase Behavior of DNA in the Presence of DNA-Binding Proteins
Volume 110, Issue 1, Pages (January 2016)
Dynamics of Active Semiflexible Polymers
Volume 112, Issue 9, Pages (May 2017)
Chi H. Mak, Tyler Matossian, Wen-Yeuan Chung  Biophysical Journal 
Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures  Shruthi Viswanath, Ilan E. Chemmama, Peter Cimermancic,
Yan Xia, Axel W. Fischer, Pedro Teixeira, Brian Weiner, Jens Meiler 
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Robust Driving Forces for Transmembrane Helix Packing
Volume 97, Issue 8, Pages (October 2009)
Volume 101, Issue 3, Pages (August 2011)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 111, Issue 11, Pages (December 2016)
Volume 104, Issue 2, Pages (January 2013)
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Volume 113, Issue 10, Pages (November 2017)
Partially Assembled Nucleosome Structures at Atomic Detail
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders  Jeetain Mittal, Robert B. Best  Biophysical.
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
Volume 93, Issue 8, Pages (October 2007)
Demian Riccardi, Qiang Cui, George N. Phillips  Biophysical Journal 
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

How Many Protein Sequences Fold to a Given Structure How Many Protein Sequences Fold to a Given Structure? A Coevolutionary Analysis  Pengfei Tian, Robert B. Best  Biophysical Journal  Volume 113, Issue 8, Pages 1719-1730 (October 2017) DOI: 10.1016/j.bpj.2017.08.039 Copyright © 2017 Terms and Conditions

Figure 1 Representative structures of the proteins we studied here: (A) WW domain (PDB: 1I5H (33)), (B) villin (PDB: 1QQV (37)), (C) NTL9 (PDB: 1DIV (39)), (D) Im7 (PDB: 1AYI (38)), (E) titin I27 (PDB: 1TIT (35)), (F) TNfn3 (PDB: 1TEN (36)), (G) PDZ domain (PDB: 1GM1 (40)), (H) α-lactalblumin (PDB: 1HFY (41)), (I) IFABP (PDB: 1IFC (34)), and (J) OmpA (PDB: 1QJP (90)). To see this figure in color, go online. Biophysical Journal 2017 113, 1719-1730DOI: (10.1016/j.bpj.2017.08.039) Copyright © 2017 Terms and Conditions

Figure 2 Correlation of evolutionary Hamiltonian energy, EEH, with protein stability. (A) Distribution of EEH of experimentally characterized stable (blue) and unstable (red) sequences of the WW domain. (B) Estimated entropy of sequences (on a log scale) along EEH, obtained by Monte Carlo simulation. The green line is the approximate threshold of EEH separating the stable and unstable sequences of the WW domain. To see this figure in color, go online. Biophysical Journal 2017 113, 1719-1730DOI: (10.1016/j.bpj.2017.08.039) Copyright © 2017 Terms and Conditions

Figure 3 Densities of sequences and SCs. (A) Entropy of sequences on the coordinate EEH for each of the 10 proteins. The vertical lines are the boundaries of foldability (EEHfold) obtained for each protein (Fig. S1). (B and C) Correlations of the SC with CD (B) and protein length (C). The red plus sign in (B) is the SC of the WW domain calculated using EEHfold = −59.2 kBT. The black line in (B) is a linear fit to the dependence of ln(SC) on CD. (D) SC∗ plotted against the protein length. To see this figure in color, go online. Biophysical Journal 2017 113, 1719-1730DOI: (10.1016/j.bpj.2017.08.039) Copyright © 2017 Terms and Conditions

Figure 4 Lattice-model test of robustness of the coevolutionary model for determining SC. (A) The most designable 27-mer structure for the HP model. (B) The logarithm of the density of sequences on the HP energy. (C) Native contact predictions from the fitness model. Native contacts are shown as red circles and the (top 27) predicted contacts based on the sequences {xHP}s90 as blue crosses. (D) Correlation of the energy in the HP model, EHP, with the evolutionary energy, EEH, for all the sequences {xHP}s90. The green line is EEHfold, which is obtained by fitting the correlation between EHP and EEH with a black line at position EHPfold (red line). (E) The logarithms of the exact density of sequences on EEH from enumeration of the HP model are shown in black; corresponding results from Monte Carlo simulations using the energy EEH are shown in purple. To see this figure in color, go online. Biophysical Journal 2017 113, 1719-1730DOI: (10.1016/j.bpj.2017.08.039) Copyright © 2017 Terms and Conditions

Figure 5 (A) Histogram of CDs for all the representative protein structures (2737) from each CATH superfamily. (B–D) The relative age of all the superfamilies from the CATH database are plotted against the median of SC (B), mean protein length (C), and median of SC∗ (D). To see this figure in color, go online. Biophysical Journal 2017 113, 1719-1730DOI: (10.1016/j.bpj.2017.08.039) Copyright © 2017 Terms and Conditions