DO NOW QUESTION Why do we get fevers? © 2012 Pearson Education, Inc. 1.

Slides:



Advertisements
Similar presentations
Do you think ‘The Iceman’ can really will himself to be warmer
Advertisements

Temperature Chapter 8 Temperature Average kinetic energy of a system Arguably the most important aspect of the physical environment for life –Influences.
Temperature regulation HBS3A. Homeostasis Maintenance of constant internal environment This involves continually replacing substances as they are used.
CHAPTER 44 REGULATING THE INTERNAL ENVIRONMENT Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B1: Regulation of Body.
When things work... Honda COG Commercial Homeostasis homeostasis – constant physiological adjustments of the body in response to external environment.
Temperature Regulation
Temperature Regulation and Water Balance
Biology 12.
Chapter 40 Study Guide and Notes. 1. & 2. How has natural selection/evolution influenced animal body SIZE and FORM? Physical laws – constrain what natural.
Temperature, Osmotic Regulation, and the Urinary System Homeostasis – the ability of living organisms to maintain internal conditions within an optimal.
Key Area 4 : Conformers and Regulators
I have a meeting tomorrow morning
Homeostasis What is homeostasis?
Detecting temperature change Chapter 10; p309. Regulating heat exchange Heat exchange – heat transfer between the internal and external environment. Factors.
This PP is also in the first part of the Nervous system section (probably better there).
Chapter 40-Coordination and Control
Animal Form and Function ch 40. What problems do all three share? Differences?
Introduction: Chilling Out
When things work... Honda COG Commercial Homeostasis homeostasis – constant physiological adjustments of the body in response to external environment.
Homeostasis the physical process that maintains a stable internal environment. (example: body temperature)
Review How do the immune systems and endocrine glands help to maintain homeostasis Apply Concepts Describe how the circulatory and endocrine systems.
Ch. 40 Warm up 1.Define and give an example of homeostasis. 2.Sequence the organization of living things from cell to biome. 3.Describe negative and positive.
Ch 40 – Animal Form & Function. Evolution of Animal size & shape Constrained by physical forces Convergent evolution i.e. fusiform shape for aquatic animals.
Thermoregulation.
Louis Chow. Homeostasis  The ability of the body to maintain a constant internal environment despite fluctuations in both the body’s activities and the.
Control of Body Temperature and Water Balance
December 13, 2010 BellRinger  Read essay “behavior of homeostasis” pg  What is the difference between an ectotherm and an endotherm? Objectives.
SBI 4U: Metablic Processes
Chapter 25: Control of Body Temperature and Water Balance
Maintaining Homeostasis. Respiratory System Brings oxygen into the body Needs a moist surface to collect air - Gills- feathery structure exposing a large.
Ch. 40 Warm up 1.Define and give an example of homeostasis. 2.Sequence the organization of living things from cell to biome. 3.Describe negative and positive.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Variables such as blood pH, carbon dioxide concentration, blood glucose levels,
Thermoregulation Biology Stage 3 Chapter 15 Pages
Chapter 40 Basic Principles of Animal Form and Function.
Physiology, Homeostasis, and Temperature Regulation 29.
Planner Nov 20 T: Homeostasis D : Explain the differences between endothermic and ectothermic New Table of Contents on page 87 DateDescription page # 11/15.
Chapter 40 Lecture 13 Living Systems and Temperature Dr. Alan McElligott.
Physiology, Homeostasis, and Temperature Regulation.
 The human body has a set of conditions under which it operates optimally  These conditions are: Temperature: 37 °C Blood Sugar: 0.1% Blood pH: 7.35.
Control of Body Temperature and Water Balance
Control of Body Temperature and Water Balance
Control of Body Temperature and Water Balance
Lesson Overview 24.8 Homeostasis.
Ch. 40 Warm up Define and give an example of homeostasis.
BASIC PRINCIPLES OF ANIMAL FORM AND FUNCTION
Ch. 40 Warm up Define and give an example of homeostasis.
Homeostasis Chapter 28.
Basic Principles of Animal Form and Function
Higher Biology Metabolism and survival
Bellwork: What is this lizard doing? Explain why…
Ch. 40 Warm up Define and give an example of homeostasis.
Warm-Up Name as many human body systems as you can remember. List the organs involved. Define homeostasis. Provide an example.
Control of Body Temperature and Water Balance
Chapter 25 الباب الخامس والعشرون
Warm-Blooded and Cold-Blooded Animals
SBI 4U: Metablic Processes
Basic Principles of Animal Form and Function
Ch. 40 Warm up Define and give an example of homeostasis.
Ch. 40 Warm up Define and give an example of homeostasis.
Thermoregulation in animals
Basic Principles of Animal Form and Function
The Excretory System in the Human
Metabolism and Survival
Ch. 40 Warm up Define and give an example of homeostasis.
In Humans & Animals.
Thermoregulation. Thermoregulation Thermoregulation Process by which animals maintain an internal temperature within a tolerable range. Critical to.
Basic Principles of Animal Form and Function
Warm-Up Define homeostasis. Provide an example.
Presentation transcript:

DO NOW QUESTION Why do we get fevers? © 2012 Pearson Education, Inc. 1

OBEJECTIVE Students will be able to (SWBAT)… explain how animals adapt to environmental changes. © 2012 Pearson Education, Inc. 2

Homeostasis: Thermoregulation Chapter 25 (25.1-25.3)

Tim & Moby Video

Figure 25.0_2 Figure 25.0_2 Grizzly bears (Ursus arctos horribilis) 5

During cold winters, bears are often dormant. Introduction During cold winters, bears are often dormant. Physiological processes aid homeostasis, keeping the body temperature about 5ºC below normal. Body fat and dense fur provide insulation. Blood flow to extremities is reduced. Nitrogen-containing wastes are metabolized differently. © 2012 Pearson Education, Inc. 6

Examples of homeostasis include Introduction Homeostasis is the maintenance of steady internal conditions despite fluctuations in the external environment. Examples of homeostasis include thermoregulation—the maintenance of temperature osmoregulation—the control of the gain and loss of water and solutes excretion—the disposal of nitrogen-containing wastes. © 2012 Pearson Education, Inc. 7

Osmoregulation and Excretion Figure 25.0_1 Chapter 25: Big Ideas Figure 25.0_1 Chapter 25: Big Ideas Thermoregulation Osmoregulation and Excretion 8

25.1 An animal’s regulation of body temperature helps maintain homeostasis Thermoregulation is the process by which animals maintain an internal temperature within a tolerable range. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. The terms warm-blooded and cold-blooded are less precise than endotherm and ectotherm. Encourage students to discuss why the latter two terms are preferable. 2. Ask your students to explain the adaptive advantages of endothermy and ectothermy. You might prompt the discussion by noting that endotherms consume about 10 times as many calories as ectotherms of equivalent body mass. What advantages might be worth this additional “cost” for endotherms? 3. The heat generated by aerobic metabolism is analogous to the heat generated by the engine of an automobile. In both cases, the heat is a by-product of the process. In the winter, this excess heat helps keep the body and the interior of the car warm. In the summer, both the body and the automobile’s engine must work to keep from overheating. © 2012 Pearson Education, Inc. 9

25.1 An animal’s regulation of body temperature helps maintain homeostasis Ectothermic animals (also called cold-blooded) gain most of their heat from external sources and include many fish, most amphibians, lizards, and most invertebrates. Endothermic animals (also called warm-blooded) derive body heat mainly from their metabolism and include birds, mammals, a few reptiles and fish, and many insects. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. The terms warm-blooded and cold-blooded are less precise than endotherm and ectotherm. Encourage students to discuss why the latter two terms are preferable. 2. Ask your students to explain the adaptive advantages of endothermy and ectothermy. You might prompt the discussion by noting that endotherms consume about 10 times as many calories as ectotherms of equivalent body mass. What advantages might be worth this additional “cost” for endotherms? 3. The heat generated by aerobic metabolism is analogous to the heat generated by the engine of an automobile. In both cases, the heat is a by-product of the process. In the winter, this excess heat helps keep the body and the interior of the car warm. In the summer, both the body and the automobile’s engine must work to keep from overheating. © 2012 Pearson Education, Inc. 10

Heat exchange with the environment may occur by four methods. Figure 25.2 Evaporation Radiation Convection Conduction Figure 25.2 Mechanisms of heat exchange Heat exchange with the environment may occur by four methods. 11

Five general categories of adaptations help animals thermoregulate. 25.3 Thermoregulation involves adaptations that balance heat gain and loss Five general categories of adaptations help animals thermoregulate. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 12

Increased metabolic heat production occurs when 25.3 Thermoregulation involves adaptations that balance heat gain and loss Increased metabolic heat production occurs when hormonal changes boost the metabolic rate in birds and mammals, birds and mammals shiver, organisms increase their physical activity, and honeybees cluster and shiver. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 13

Figure 25.3_UN01 Figure 25.3_UN01 Honeybees clustering together and shivering to produce heat 14

Insulation is provided by hair, feathers, and fat layers. 25.3 Thermoregulation involves adaptations that balance heat gain and loss Insulation is provided by hair, feathers, and fat layers. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 15

Circulatory adaptations: increased or decreased blood flow to skin 25.3 Thermoregulation involves adaptations that balance heat gain and loss Circulatory adaptations: increased or decreased blood flow to skin Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 16

Figure 25.3_1 Figure 25.3_1 Heat dissipation via ear flapping (convection) and via water spray (evaporative cooling) 17

Evaporative cooling may involve 25.3 Thermoregulation involves adaptations that balance heat gain and loss Evaporative cooling may involve sweating, panting, or spreading saliva on body surfaces. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 18

25.3 Thermoregulation involves adaptations that balance heat gain and loss Behavioral responses are used by endotherms and ectotherms and include moving to the sun or shade, migrating, and bathing. Student Misconceptions and Concerns 1. The concept of homeostasis may be new to some students, who have never considered how organisms must adjust to subtle changes in environmental conditions. Analogies to other systems that engage in self-regulation, such as the water regulation of a toilet or the temperature regulation of a furnace, may help. 2. One role of the circulatory system rarely discussed is the transport of heat. Blood vessels near the surface of the body expand when we are overheated, releasing some of this excess to the environment. Conversely, during periods of exposure to cold, blood is shunted away from the skin to conserve heat. Teaching Tips 1. Have students list the many factors that affect heat gain and loss during periods of physical activity, then have them identify which of the four physical processes for exchanging heat are involved. The factors include (a) the person’s physical condition, (b) the level of physical activity, (c) the age of the person (younger people tend to have higher metabolic rates), (d) the person’s level of hydration (which in turn affects the amount of sweating and evaporative cooling), (e) the external level of humidity (higher levels decrease evaporative cooling), (f) the intensity of the wind (greater intensity promotes evaporative cooling), (g) the intensity of sunlight, and (h) the color of the person’s clothing (which affects the amount of light energy the body absorbs). 2. You can extend the exercise above by challenging your class to identify environmental conditions when it would be too hot to play an outdoor sport. That is, when as a parent or coach would you want to prevent practice or a game because it is dangerously hot? 3. As an alternative to the above, challenge students to identify a human example of each of the four physical processes that involve heat exchange with the environment and that promote thermoregulation. Or, to check student comprehension, describe such examples and challenge the class to match the examples to the correct terminology. 4. Some students will be familiar with the type of foam insulation wrap surrounding interior pipes. These forms of insulation are especially necessary when hot- and cold-water pipes run parallel and in close proximity to each other. Without the insulation, heat would be easily transferred from hot-water to cold-water pipes, in a situation similar to countercurrent heat exchange systems in animals. © 2012 Pearson Education, Inc. 19

You should now be able to Explain how bear physiology adjusts during dormancy. Describe four ways that heat is gained or lost by an animal. Describe five categories of adaptations that help animals thermoregulate. © 2012 Pearson Education, Inc. 20