Ensemble (weather) prediction review for 26 th WGNE, 2010 Tom Hamill 1 and Pedro da Silva-Dias 2 1 NOAA/ESRL 2 Laboratório Nacional de Computação Científica.

Slides:



Advertisements
Similar presentations
Author: Julia Richards and R. Scott Hawley
Advertisements

A unified linear Model Output Statistics scheme for both deterministic and ensemble forecasts S. Vannitsem Institut Royal Météorologique de Belgique Monterey,
Recent & planned developments to the Met Office Global and Regional Ensemble Prediction System (MOGREPS) Richard Swinbank, Warren Tennant, Sarah Beare,
Ensemble Forecasting of High-Impact Weather Richard Swinbank with thanks to various, mainly Met Office, colleagues High-Impact Weather THORPEX follow-on.
1 What constrains spread growth in forecasts initialized from ensemble filters? Tom Hamill (& Jeff Whitaker) NOAA Earth System Research Lab Boulder, Colorado,
Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-Term forecasting of Typhoon Meranti (2010) at landfall Xin Li 1, Yuan Wang 1, Jie.
THOR Annual Meeting - Bergen 9-11 November /25 On the impact of initial conditions relative to external forcing on the skill of decadal predictions:
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Extended range forecasts at MeteoSwiss: User experience.
Page 1© Crown copyright 2004 Seasonal forecasting activities at the Met Office Long-range Forecasting Group, Hadley Centre Presenter: Richard Graham ECMWF.
ECMWF Slide 1Met Op training course – Reading, March 2004 Forecast verification: probabilistic aspects Anna Ghelli, ECMWF.
Page 1 © Crown copyright 2005 ECMWF User Meeting, June 2006 Developments in the Use of Short and Medium-Range Ensembles at the Met Office Ken Mylne.
ECMWF Training Course 2005 slide 1 Forecast sensitivity to Observation Carla Cardinali.
Sub-seasonal to seasonal prediction David Anderson.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Correlation and Simple Regression. 2 Introduction Interested in the relationships between variables. What will happen to one variable if another is.
Evaluating Window Joins over Unbounded Streams Author: Jaewoo Kang, Jeffrey F. Naughton, Stratis D. Viglas University of Wisconsin-Madison CS Dept. Presenter:
Chapter 13 – Weather Analysis and Forecasting
Scheduled Model Predictive Control of Wind turbines in Above Rated Wind Avishek Kumar Dr Karl Stol Department of Mechanical Engineering.
Page 1 NAE 4DVAR Oct 2006 © Crown copyright 2006 Mark Naylor Data Assimilation, NWP NAE 4D-Var – Testing and Issues EWGLAM/SRNWP meeting Zurich 9 th -12.
2 |SharePoint Saturday New York City
The challenge ahead: Ocean Predictions in the Arctic Region Lars Petter Røed * Presented at the OPNet Workshop May 2008, Geilo, Norway * Also affiliated.
© European Centre for Medium-Range Weather Forecasts Operational and research activities at ECMWF now and in the future Sarah Keeley Education Officer.
Meteorological Training Course, 20 March /25 Using Combined Prediction Systems (CPS) for wind energy applications European Centre for Medium-Range.
© 2012 National Heart Foundation of Australia. Slide 2.
1 March 2007 NAEFS Upgrade Yuejian Zhu, Richard Wobus, Mozheng Wei, Bo Cui and Zoltan Toth Environmental Modeling Center NOAA/NWS/NCEP Acknowledgements:
1 Using Bayesian Network for combining classifiers Leonardo Nogueira Matos Departamento de Computação Universidade Federal de Sergipe.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Probabilistic Reasoning over Time
ECMWF long range forecast systems
Xuguang Wang, Xu Lu, Yongzuo Li, Ting Lei
SPC Potential Products and Services and Attributes of Operational Supporting NWP Probabilistic Outlooks of Tornado, Severe Hail, and Severe Wind.
Statistical post-processing using reforecasts to improve medium- range renewable energy forecasts Tom Hamill and Jeff Whitaker NOAA Earth System Research.
CHOICES FOR HURRICANE REGIONAL ENSEMBLE FORECAST (HREF) SYSTEM Zoltan Toth and Isidora Jankov.
Improving High Resolution Tropical Cyclone Prediction Using a Unified GSI-based Hybrid Ensemble-Variational Data Assimilation System for HWRF Xuguang Wang.
Instituting Reforecasting at NCEP/EMC Tom Hamill (ESRL) Yuejian Zhu (EMC) Tom Workoff (WPC) Kathryn Gilbert (MDL) Mike Charles (CPC) Hank Herr (OHD) Trevor.
Brian Ancell, Cliff Mass, Gregory J. Hakim University of Washington
Introduction to Numerical Weather Prediction and Ensemble Weather Forecasting Tom Hamill NOAA-CIRES Climate Diagnostics Center Boulder, Colorado USA.
Ensemble Post-Processing and it’s Potential Benefits for the Operational Forecaster Michael Erickson and Brian A. Colle School of Marine and Atmospheric.
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
LAMEPS Development and Plan of ALADIN-LACE Yong Wang et al. Speaker: Harald Seidl ZAMG, Austria Thanks: Météo France, LACE, NCEP.
EnKF Overview and Theory
Computational Issues: An EnKF Perspective Jeff Whitaker NOAA Earth System Research Lab ENIAC 1948“Roadrunner” 2008.
Exploring sample size issues for 6-10 day forecasts using ECMWF’s reforecast data set Model: 2005 version of ECMWF model; T255 resolution. Initial Conditions:
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
MPO 674 Lecture 20 3/26/15. 3d-Var vs 4d-Var.
A Comparison of the Northern American Regional Reanalysis (NARR) to an Ensemble of Analyses Including CFSR Wesley Ebisuzaki 1, Fedor Mesinger 2, Li Zhang.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Celeste Saulo and Juan Ruiz CIMA (CONICET/UBA) – DCAO (FCEN –UBA)
Notes on reforecasting and the computational capacity needed for future SREF systems Tom Hamill NOAA Earth System Research Lab presentation for 2009 National.
1 An overview of the use of reforecasts for improving probabilistic weather forecasts Tom Hamill NOAA / ESRL, Physical Sciences Div.
Model Post Processing. Model Output Can Usually Be Improved with Post Processing Can remove systematic bias Can produce probabilistic information from.
Hurricane Forecast Improvement Project (HFIP): Where do we stand after 3 years? Bob Gall – HFIP Development Manager Fred Toepfer—HFIP Project manager Frank.
18 September 2009: On the value of reforecasts for the TIGGE database 1/27 On the value of reforecasts for the TIGGE database Renate Hagedorn European.
Statistical Post Processing - Using Reforecast to Improve GEFS Forecast Yuejian Zhu Hong Guan and Bo Cui ECM/NCEP/NWS Dec. 3 rd 2013 Acknowledgements:
An Examination Of Interesting Properties Regarding A Physics Ensemble 2012 WRF Users’ Workshop Nick P. Bassill June 28 th, 2012.
JCSDA Workshop Brock Burghardt August Model Configuration WRF-ARW v3.5.1 Forecasts integrated 30 hours Cycled every 6 hours (non-continuous boundaries)
Slide 1© ECMWF The effect of perturbation re-centring on ensemble forecasts Simon Lang, Martin Leutbecher, Massimo Bonavita.
Ensemble prediction review for WGNE, 2010 Tom Hamill 1 and Pedro de Silva-Dias 2 1 NOAA/ESRL 2 Laboratório Nacional de Computação Científica
Probabilistic Forecasts Based on “Reforecasts” Tom Hamill and Jeff Whitaker and
Figures from “The ECMWF Ensemble Prediction System”
Current Issues and Challenges in Ensemble Forecasting Junichi Ishida (JMA) and Carolyn Reynolds (NRL) With contributions from WGNE members 31 th WGNE Pretoria,
Tom Hamill, Jeff Whitaker, Brian Etherton, and Zoltan Toth with contributions from Phil Pegion, Gary Bates, Don Murray, others 1 Ensemble-based data assimilation.
Hybrid Data Assimilation
The Met Office Ensemble of Regional Reanalyses
MOGREPS developments and TIGGE
Presentation transcript:

Ensemble (weather) prediction review for 26 th WGNE, 2010 Tom Hamill 1 and Pedro da Silva-Dias 2 1 NOAA/ESRL 2 Laboratório Nacional de Computação Científica 1

Sources of improvement in ensemble forecast systems Make the model better (improved parameterizations, resolution, domain size, etc.) Improve methods of generating initial conditions Treat model uncertainties in physically realistic fashion – stochastic effects – post-processing 2

Making the model better 3 32-km SREF P > 0.54-km SSEF P > 0.5 Verification An example from NSSL-SPC Hazardous Weather Test Bed, forecast initialized 20 May 2010 With warm-season QPF, coarse resolution and parameterized convection of SREF clearly inferior to the 4-km, resolved convection in SSEF.

850hPa Temperature 2m Temperature 10m wind speed 6hrly Precipitation Example: UK Met Offices MOGREPS-R upgrade to 70 levels Ranked Probability Score Area: Full NAE domain c/o Richard Swinbank, UK Met Office.

Improve initial conditions for ensembles ECMWF and Meteo France: initialize using perturbed-obs 4D-Var ensemble data assimilations Ensemble Kalman Filter (EnKF) progress Hybridizations of EnKF and Var. 5

Singular vector (SV) lingo initial-time singular vectors – these are the perturbations at time t=0 that are expected to grow most rapidly during a subsequent short- range forecast (total-energy norm). evolved singular vectors – these are what the initial-time perturbations evolve into some time later. ECMWF previously has combined evolved SVs from previous cycle together with initial-time SVs from current cycle to initialize ensemble. But are these representative of analysis error? 6

ECMWFs ensembles of data assimilation (EDA) Want to better quantify analysis uncertainty. 10 independent, lower-res 4D-Vars (T255 outer, T95/159 inner loops) with perturbed obs, perturbed SSTs, perturbed model tendencies comprise the EDA. Not sure how the 10 are combined with the 50 initial-time SVs… 7

Perturbed initial condition, old technique of evolved singular vectors vs. new EDA Ref: ECMWF Newsletter 123 Analysis error of course not just confined to the storm track, so perturbations shouldnt, either. 8

Perturbed forecast, 24 h later… Ref: ECMWF Newsletter 123 At 24-h lead, the EVO-SVINI perturbation have spread out, but there are still many regions with effectively no differences (i.e., forecast uncertainty is estimated to be negligible). 9

ECMWF: impact of EDA vs. old evolved singular vectors, T Ref: ibid

Use in data assimilation: ECMWFs T850 wind background-error estimate, old and EDA Still isotropic background-error covariances, at least at beginning of assimilation window. 11 ovarianc Ref: ibid

EnKF in comparison, uses ensemble to estimate covariance structure, too. 12 Other practical advantages of EnKF are that (1) its comparatively easy to code and maintain, and (2) it parallelizes rather easily. Main computational expense is propagating the n forecasts forward to the next analysis time; with M processors available, use M/n for each forecast. For the update, there are algorithms that load-balance and achieve very good scaling. update to an observation 1K greater than mean background at dot.

Canonical EnKF update equations (for time t) H = (possibly nonlinear) operator from model to observation space (1)An ensemble of parallel data assimilation cycles is conducted, assimilating perturbed observations. (2)Background-error covariances are estimated using the ensemble. Notes: 13

Propagation of state and error covariances in EnKF 14 if forecast model is perfect if forecast model has model error. - or - (P a never explicitly formed)

The ensemble Kalman filter: a schematic (This schematic is a bit of an inappropriate simplification, for EnKF uses every member to estimate background- error covariances) 15

Global statistics, GFS/EnKF vs. ECMWF (ensemble statistics, 5 June to 21 Sep 2010; all basins together) 16 GFS/EnKF competitive despite lower resolution (T254 vs. ECMWFs T639). GFS/EnKF has less spread than error this year, more similar last year. Is this due to this years T254 vs. last years T382?

Global statistics, GFS/EnKF vs. NCEP 17 At most every lead, GFS/EnKF is statistically significantly better than NCEP operational ens., which uses (a) older GFS model, lower resolution; (b) ETR perturbations around GSI control, and (c) vortex relocation.

EnKF being used for climate reanalysis also (particularly advantageous with sparse data) 18 MSLP (mean and spread, plus ob locations) 500 hPa height (mean and spread) 24-h track forecasts (red observed) Reanalysis of the 1938 New England Hurricane using only p s obs

Estimating space and time-varying uncertainty in reanalyses (20 th Century Reanalysis Project, led by Gil Compo) # obs EnKF accurately captures changing uncertainty as observing network changes. 19

20

CMCs comparison of EnKF vs. 4D-Var with static covariances Ref: Buehner et al., MWR,

CMCs hybrid, with EnKF covariances used in 4D-Var ref: Buehner et al., MWR,

Preliminary EnKF-GSI hybrid results In very early tests with little tuning, for temperature, EnKF-GSI and EnKF comparable in error (50-50 split between GSI & EnKF covariances). 23

Preliminary EnKF-GSI hybrid results For winds, EnKF-GSI slightly higher than EnKF outside of tropics. Operating hypothesis is that EnKF can assimilate data over time window, while current hybrid can only assimilate synoptic observations. This will not be the case with a 4D-Var hybrid. Also, room to adjust how much to weight EnKF and XD-Var covariances. Hence, expect hybrid to improve. 24

Accounting for model uncertainty Forecast error grows not only because of chaos, but because of model imperfections – limited resolution – bugs – less than ideally formulated (and deterministic) parameterizations Remedies – improve the model – multi-model ensembles – post-processing; correct current F using past F,O relationships – stochastic elements introduced into forecast model. 25

BAMS article, August

Multi-model ensembles Pros: Equally skillful, independently developed models make better probabilistic forecasts than what each produces individually. Cons: what if talent and resources were pooled to develop one (or a few) really good models rather than disperse the effort? (as evidence, consider ECMWF vs. the rest of the TIGGE community). 27

28

Pro: Example of multi-model improvement from NAEFS 29 Raw NCEP Statistically adjusted NCEP Adjusted NCEP + CMC Adjusted NCEP + CMC + Navy

Con: T2m forecasts, ECMWF-reforecast vs. multi-model 30 TIGGE-4: combination of ECMWF, CMC, NCEP, and UKMO 30-day bias corrected ensembles. ECMWF-CAL: their forecasts, corrected using a combination of previous 30-day bias and 20-year reforecast using nonhomogeneous Gaussian regression. Here, ERA-Interim used for verification (controversial, since analyses have biases. However, verification against station obs similar). Ref: Hagedorn et al. 2010, MWR, conditionally accepted.

Potential value of reforecast approach 31 Post-processing with large training data set can permit small-scale detail to be inferred from large-scale, coarse model fields. Large training data set especially helpful with rare events.

NOAA to generate new reforecast data set Will generate 11-member ensemble to 16 days lead using GFS every day over 30-year period. Data set to be freely available, hopefully by mid Common variables like those from TIGGE data set available on fast-access archive. Full model fields archived to tape. Will continue to run model in real time, somehow, somewhere (either at NOAAs EMC or ESRL) 32

Some recent work on stochastic parameterizations Stochastically perturbed physical tendencies (ECMWF). Stochastic backscatter (ECMWF, Met Office, CMC, others). Stochastic convective parameterization (universities, Met Office, NOAA/ESRL, US Navy, others) Field is in its relative infancy. WGNE/THORPEX Workshop at ECMWF planned, June

Conclusions EnKF rapidly moving from exotic technology to being widely exploited for data assimilation and ensemble prediction. Statistical post-processing and multi-model techniques may be helpful. Physically plausible stochastic methods to treat model uncertainty the next frontier – discussion of June 2011 workshop later in WGNE 34