Einstein Coefficients

Slides:



Advertisements
Similar presentations
Thermo & Stat Mech - Spring 2006 Class 20 1 Thermodynamics and Statistical Mechanics Heat Capacities.
Advertisements

Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
PHOTONS IN CHEMISTRY OUT WHY BOTHER?. E = h ν λν = c [ m/s]
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
Lecture 14 Star formation. Insterstellar dust and gas Dust and gas is mostly found in galaxy disks, and blocks optical light.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The Interstellar Medium and Interstellar Molecules Ronald Maddalena National Radio Astronomy Observatory.
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Average Lifetime Atoms stay in an excited level only for a short time (about 10-8 [sec]), and then they return to a lower energy level by spontaneous emission.
States and transitions
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Substitute Lecturer: Jason Readle Thurs, Sept 17th, 2009
Introduction to Spectroscopy Yongsik Lee.
Separation of Motion QM. Separation Vibration Rotation.
Radio Waves Interaction With Interstellar Matter
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Problem 1 Why is the Sky blue?. Scattering efficiency ω 4 ∞ So the higher the frequency the stronger the scattering Blue light is much more strongly scattered.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
1B11 Foundations of Astronomy The Electromagnetic Spectrum Liz Puchnarewicz
365 x 24 x 60 x 60 Harry Kroto x 24 x 60 x 60 = 0.36 x 2.4 x 0.36 x 10 2 x 10 x 10 4 Harry Kroto 2004.
Lifetimes (in yrs) Photo dissociation t PD = 10 3 AB + h  A + B 2-body collisions t 2B = 10 3 /n A + B  AB*  A + B Radiative association t RA = 10 9.
1.1 What’s electromagnetic radiation
G(r) r – r e  r – r e is the vibrational coordinate rere.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
H Atom 21 cm Line. Is the Milky Way a Spiral Galaxy like this one?
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
Tuesday, September 11 Homework due Tuesday, September 18 th Outline: –Airmass –Magnitudes –Types of Spectra Blackbody Emission Line.
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Fermi’s Golden Rule Io I l Harry Kroto 2004.
Spectroscopy from Space
Electromagnetic Radiation
The Born-Oppenheimer Separation
Only three lines observed R(0) R(1) P(1)
Sound Waves.
Mitsunori ARAKI, Hiromichi WAKO, Kei NIWAYAMA and Koichi TSUKIYAMA○
Molecules: Probes of the Interstellar Medium
“Forbidden Transitions”
CH+ and DIBs toward Herschel 36
Queen Magazine Harry Kroto 2004.
WHERE STARS ARE BORN.
The problem of how to make H2 in Space
DETECTING MOLECULAR LINES IN THE GHz FREQUENCY RANGE
The Discovery of the Interstellar Medium (ISM)
U line procedure DeltaF(J) = 2B(J+1) separations =2B (MHz)
Rigid Diatomic molecule
Doppler Shifts of Interstellar NaD lines
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
H’(t)=E-M field D  = - fi Transition dipole moment.
Electromagnetic Waves
Queen Magazine Harry Kroto 2004.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
Molecules Harry Kroto 2004.
CO Laboratory rotational infrared spectrum
Bok Globule Barnard 68.
The selection rules for vibration rotation transitions are
Harry Kroto 2004.
 = (4/3ħc) n em2  (Nm-Nn) (o-)
at: ircamera.as.arizona.edu/.../magneticearth.htm
Consider the bending mode of CO2
Study of fast reactions
Far infrared rotational spectrum of CO J= B
 l .  l   l   l   l  Io.
It has come at the speed of light
The Discovery of the Interstellar Medium (ISM)
Vibrational Energy Levels
Presentation transcript:

Einstein Coefficients m Harry Kroto 2004

Einstein Coefficients m Harry Kroto 2004

Einstein Coefficients Bn←m m Harry Kroto 2004

Einstein Coefficients Bn←m m Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m m Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m m Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m An→m m Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m An→m m A = 1.2 x 10-37 3 n em2 transitions per sec Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m An→m m A = 1.2 x 10-37 3 n em2 transitions per sec Spontaneous emission lifetime  Harry Kroto 2004

Einstein Coefficients Bn←m Bn→m An→m m A = 1.2 x 10-37 3 n em2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = 1037/3 sec Harry Kroto 2004

Lifetime (secs)  ~ 1037/3 Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

e = 1Debye 1yr = 3 x 107 sec * magnetic dipole   (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 1.5x109 3x1027 1010 * H2CO rotations 1cm 3 x 1010 3x1031 106 CO2 vibrations 10 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 3 x 1015 3 x 1046 10-9 e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

Collisions in the Interstellar Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then Harry Kroto 2004

Collisions in the Interstellar Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision Harry Kroto 2004

Collisions in the Interstellar Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Harry Kroto 2004

Collisions in the Interstellar Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004

Harry Kroto 2004