Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice 

Slides:



Advertisements
Similar presentations
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Advertisements

Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters  Y. Minegishi, K. Hosokawa, N. Tsumaki 
Induction of osteoclast-like cells derived from the synovial lavage fluids of patients with temporomandibular joint disorders  H. Takano, D.D.S., W. Ariyoshi,
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Fibroblast Growth Factor 23 drives MMP13 expression in human osteoarthritic chondrocytes in a Klotho-independent manner  A. Bianchi, M. Guibert, F. Cailotto,
Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth  J. Chen, Y. Kamiya, I. Polur, M. Xu, T. Choi, Z. Kalajzic,
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo  S. Nakatani, H. Mano, C. Sampei,
G. J. Kerr, M. R. McCann, J. K. Branch, A. Ratneswaran, M. A. Pest, D
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Mice deficient in the NF-κB negative regulator, itch, develop severe osteoarthritis and reduced synovial lymphatic drainage due to m1 macrophages-induced.
M. H. van den Bosch, A. B. Blom, V. Kram, A. Maeda, S. Sikka, Y
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Chondroprotective effect of the bioactive peptide prolyl-hydroxyproline in mouse articular cartilage in vitro and in vivo  S. Nakatani, H. Mano, C. Sampei,
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Positron emission tomography with 18F-FDG in osteoarthritic knee
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
Quantitative assessment of articular cartilage morphology via EPIC-μCT
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight  I.G. Otterness, Ph.D., F. Eckstein, M.D. 
Reduced chondrocyte proliferation, earlier cell cycle exit and increased apoptosis in neuronal nitric oxide synthase-deficient mice  Q. Yan, Q. Feng,
Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling  Y. Chen, S. Lin, Y. Sun, J. Guo, Y. Lu, C.W. Suen,
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice  Q. Wang, Q.Y. Tan, W. Xu, H.B. Qi, D. Chen, S.
Evidence for the dysregulated expression of TWIST1, TGFβ1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients  D.D. Kumarasinghe,
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats  F.L. Ren, Master,
Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint.
Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet 
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament.
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Time to be positive about negative data?
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Bone-seeking superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic resonance imaging of bone turnover in early osteoarthritis  A. Panahifar,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Spontaneous development of sclerotic changes of subchondral bone and cartilage degradation in endothelin-1 overexpression transgenic mice upon high fat/high.
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis  Juanhong.
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Sex differences in the estrogen-dependent regulation of temporomandibular joint remodeling in altered loading  J.L. Robinson, K. Cass, R. Aronson, T.
Who should have a joint replacement? A plea for more ‘phronesis’
H.L. Reesink, A.E. Watts, H.O. Mohammed, G.D. Jay, A.J. Nixon 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
The hallmarks of osteoarthritis and the potential to develop personalised disease- modifying pharmacological therapeutics  D.P. Tonge, M.J. Pearson, S.W.
Identification of molecular markers for articular cartilage
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
M. Nagao, C.W. Cheong, B.R. Olsen  Osteoarthritis and Cartilage 
In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT  K. Chiba, M. Ito, M. Osaki, M. Uetani,
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Location-specific hip joint space width for progression of hip osteoarthritis – Data from the Osteoarthritis Initiative  C. Ratzlaff, C. Van Wyngaarden,
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis 
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
Presentation transcript:

Altered functional loading causes differential effects in the subchondral bone and condylar cartilage in the temporomandibular joint from young mice  J. Chen, D.D.S., Ph.D., K.P. Sorensen, B.A., T. Gupta, D.M.D., T. Kilts, B.A., M. Young, Ph.D., S. Wadhwa, D.D.S., Ph.D.  Osteoarthritis and Cartilage  Volume 17, Issue 3, Pages 354-361 (March 2009) DOI: 10.1016/j.joca.2008.05.021 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Body weight of female CD-1 mice exposed to different masticatory conditions. Points are the mean and s.e.m. for n=58 for normal loading group, n=9 incisor trimming, n=9 soft diet, n=59 for altered functional loading (incisor trimming in combination with soft diet administration) and n=30 for the return to normal loading (Re-Normal). aSignificant difference between altered functional loading and normal loading (P<0.05). bSignificant difference between altered functional loading and return to normal loading (P<0.05). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 21-day-old female CD-1 mice were exposed to different masticatory conditions. Real time PCR analysis for Prg4, Pthrp, Sox9, Col II, Ihh, Col X, Vegf, Opn, Oc, Opg, Runx2, Col I and Rankl gene expression from the mandibular condylar head from (A) 4 weeks of normal loading, soft diet, incisor trimming or soft diet and incisor trimming (altered functional loading), and (B) 6 weeks of normal loading, altered functional loading or return to normal loading conditions (Re-Normal). Points are the mean and SEM for n=5 for the 4-week and n=6 for the 6-week loading groups. aSignificant difference between altered functional loading and normal loading (P <0.05). bSignificant difference between altered functional loading and return to normal loading (P<0.05). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Measurements of mandibles from 21-day-old female CD-1 mice subjected to normal loading (2, 4 or 6 weeks), altered functional loading (2, 4 or 6 weeks) and return to normal loading (Re-Normal) (6weeks). (A and B) Gross mandibular and condylar measurements of the whole mandible and the distal condylar end of the mandible. (C–F) Statistical results of the measurements of cartilage width (C), condyle head length (D), mandible length (E) and cartilage thickness (F). Points are the mean and s.e.m. for n=9 for the normal loading group, n=9 for the altered functional loading group and n=9 for the return to normal loading group. aSignificant difference between altered functional loading and normal loading (P<0.05). bSignificant difference between altered functional loading and return to normal loading (P<0.05). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Representatives of the Safranin O staining (red) of the condylar cartilage. The slides were counter stained with Fast Green. (A) 4-Week normal loading; (B) 4-week altered functional loading; (C) 6-week normal loading; (D) 6-week altered functional loading; and (E) return to normal loading (4-week altered loading followed by 2-week normal loading). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Micro-CT analysis of the subchondral bone. Representative images of mid-sagittal cross sections from the mandibular condylar head of 21-day-old CD-1 mice subjected to 4 weeks Normal Loading (A) or Altered functional loading (B). (C–G) Micro-CT analysis of bone volume fraction (C), total volume (D), bone volume (E), trabecular thickness (F) and trabecular spacing (G) from the mandibular condylar subchondral bone of 21-day-old CD-1 mice subjected to 0 weeks (n=4), 2 weeks (n=11), 4 weeks (n=10), or 6 weeks (n=19) of normal loading, altered functional loading or return to normal loading TMJ conditions. aSignificant difference between altered loading and normal loading (P<0.05). bSignificant difference between altered loading and return to normal loading (P<0.05). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Immunohistochemistry of Col II (A – normal loading, B – altered functional loading) and negative control (C) performed on sagittal sections of the TMJ area from female CD-1 49-day-old mice. (D) Semiquantitative analysis of COL II positive area normalized by total mandibular condylar cartilage area from 49-day-old CD-1 mice exposed to 4 weeks of normal loading or altered loading. Points are the mean and SEM for n=11 for the normal loading group and n=11 for the altered loading group. aSignificant difference between altered loading and normal loading (P<0.05). Osteoarthritis and Cartilage 2009 17, 354-361DOI: (10.1016/j.joca.2008.05.021) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions