Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
ANGIOGENESIS Vasculogenesis: Embryonic development from endothelial precursors called ‘angioblasts’ Angiogenesis/ neovascularization: Process of blood.
Advertisements

Jeffrey T Wigle, Guillermo Oliver  Cell 
Margreet de Vries1,2, Laura Parma1,2, Erna Peters1,2,
Figure 4 Intestinal lacteal absorption and immune cell trafficking
The Cutaneous Vascular System in Chronic Skin Inflammation
Slit-Robo Cancer Cell Volume 4, Issue 1, Pages 1-2 (July 2003)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 7 Clinical options for HCC therapy
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 3 The 'leaky gut' hypothesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Combination therapy for HCC
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Definition and concept of ACLF
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Jeffrey T Wigle, Guillermo Oliver  Cell 
Volume 3, Issue 3, Pages (September 2002)
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Urol. doi: /nrurol
Transcriptional Control of Endothelial Cell Development
Figure 5 Intestinal lymph draining pattern and contents
Figure 1 Overview of the immunopathogenesis of ulcerative colitis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Rheumatol. doi: /nrrheum
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
different types of liver cells
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Inhibition of ephrinB2/EphB4 signaling does not prevent pericyte recruitment Inhibition of ephrinB2/EphB4 signaling does not prevent pericyte recruitment.
Figure 2 13C-octanoic acid gastric emptying breath test
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Hematopoiesis from embryonic stem cells: lessons from and for ontogeny
Figure 4 Diverse molecular mechanisms of long non-coding RNAs
Figure 1 The role of CTLA4 and PD1 in T cell activation
Lymphangiogenesis: Molecular Mechanisms and Future Promise
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Schematic of normal and abnormal liver regeneration
Figure 2 Developmental and alternative sources of fibroblasts
Figure 1 Animal models of liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 2 New therapeutic approaches in IBD with their specific targets
Semaphorin Signaling in Cardiovascular Development
Figure 5 Systems biological model of IBS
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Vascular frontiers without borders
Volume 13, Issue 9, Pages (December 2015)
Volume 10, Issue 10, Pages (March 2015)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Blood Vessel Formation: What Is Its Molecular Basis?
Figure 1 New therapeutic approaches in IBD therapy based on blockade of T-cell homing and retention Figure 1 | New therapeutic approaches in IBD therapy.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Kristy Red-Horse, Yongping Crawford, Farbod Shojaei, Napoleone Ferrara 
Midkine and Melanoma Metastasis: A Malevolent Mix
Lymphatic Vessels at the Heart of the Matter
The origins of organ-specific lymphatic vessels in the mouse embryo.
Figure 1 The spread of colorectal cancer metastases
Volume 10, Issue 10, Pages (March 2015)
Vascular frontiers without borders
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.79 Figure 3 Molecular mechanisms of intestinal lymphatic development and remodelling Figure 3 | Molecular mechanisms of intestinal lymphatic development and remodelling. a | Maintenance of adult lacteals relies on VEGFC and DLL4 signalling. VEGFC is expressed in villus smooth muscle cells (SMCs; red) and arterioles (not shown here). b | Global inducible deletion of either Vegfc (blue villus SMCs) or Vegfr3, or inhibition of VEGFC–VEGFR3 signalling by antibody blockade results in shortening of lacteals. c | DLL4 expression, which is dependent on VEGFR2–VEGFR3 signalling, is necessary for lacteal length maintenance and inducible lymphatic-specific Dll4 ablation leads to lacteal attrition. d | Intestinal lymphatic vessels have multiple developmental origins. Venous-derived lymphatic endothelial cells (LECs) form the mesenteric lymph sac from which LECs migrate towards the intestine starting at embryonic day 13 (E13). Another population of LECs derived from PDGFB+ and cKIT+ haemogenic endothelium (HaemEC-derived LECs) appear on the intestinal mesentery at a similar time point. LECs migrate and form submucosal vessels and start sprouting into villi after E15. By postnatal day 10 (P10), most villi contain mature lacteals. Bernier-Latmani, J. & Petrova, T. V. (2017) Intestinal lymphatic vasculature: structure, mechanisms and functions Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.79