Volume 103, Issue 10, Pages (November 2012)

Slides:



Advertisements
Similar presentations
Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Advertisements

Volume 109, Issue 11, Pages (December 2015)
High-Density 3D Single Molecular Analysis Based on Compressed Sensing
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization Microscopy  Joseph N. Forkey, Margot E. Quinlan,
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Volume 104, Issue 2, Pages (January 2013)
Volume 105, Issue 9, Pages (November 2013)
Heterogeneous Drying Stresses in Stratum Corneum
Volume 105, Issue 5, Pages (September 2013)
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Volume 103, Issue 9, Pages (November 2012)
Michael J. Knight, Serena Dillon, Lina Jarutyte, Risto A. Kauppinen 
Volume 106, Issue 8, Pages (April 2014)
Volume 91, Issue 12, Pages (December 2006)
Magnetic Stimulation of One-Dimensional Neuronal Cultures
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Ya-li Yang, Lindsay M. Leone, Laura J. Kaufman  Biophysical Journal 
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Tamara C. Bidone, Haosu Tang, Dimitrios Vavylonis  Biophysical Journal 
Y. Xia, Ph.D., N. Ramakrishnan, Ph.D., A. Bidthanapally, Ph.D. 
Hirokazu Tanimoto, Masaki Sano  Biophysical Journal 
Volume 101, Issue 2, Pages (July 2011)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Mechanics of Fluid-Filled Interstitial Gaps. II
Volume 113, Issue 11, Pages (December 2017)
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Singular Behavior of Slow Dynamics of Single Excitable Cells
Volume 109, Issue 12, Pages (December 2015)
A 3-D Model of Ligand Transport in a Deforming Extracellular Space
Volume 109, Issue 12, Pages (December 2015)
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Site-Specific Dichroism Analysis Utilizing Transmission FTIR
Dynamic Motions of the HIV-1 Frameshift Site RNA
Volume 103, Issue 5, Pages (September 2012)
Volume 98, Issue 6, Pages (March 2010)
Volume 106, Issue 2, Pages (January 2014)
Quantitative Image Restoration in Bright Field Optical Microscopy
Collagen Fibrils: Nanoscale Ropes
Volume 111, Issue 7, Pages (October 2016)
Aligning Paramecium caudatum with Static Magnetic Fields
Volume 111, Issue 4, Pages (August 2016)
Venkat Maruthamuthu, Margaret L. Gardel  Biophysical Journal 
Volume 112, Issue 10, Pages (May 2017)
Robust Driving Forces for Transmembrane Helix Packing
Volume 105, Issue 9, Pages (November 2013)
Consequences of Molecular-Level Ca2+ Channel and Synaptic Vesicle Colocalization for the Ca2+ Microdomain and Neurotransmitter Exocytosis: A Monte Carlo.
Evaluating Intramural Virtual Electrodes in the Myocardial Wedge Preparation: Simulations of Experimental Conditions  G. Plank, A. Prassl, E. Hofer, N.A.
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
John E. Pickard, Klaus Ley  Biophysical Journal 
Volume 106, Issue 5, Pages (March 2014)
Volume 88, Issue 6, Pages (June 2005)
Volume 115, Issue 12, Pages (December 2018)
Volume 97, Issue 5, Pages (September 2009)
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
The Role of Network Architecture in Collagen Mechanics
Yuri G. Strukov, A.S. Belmont  Biophysical Journal 
A New Angle on Microscopic Suspension Feeders near Boundaries
Ping-Jung Su, Wei-Liang Chen, Yang-Fang Chen, Chen-Yuan Dong 
Calcium-Induced Alterations in Mitochondrial Morphology Quantified in Situ with Optical Scatter Imaging  Nada N. Boustany, Rebekah Drezek, Nitish V. Thakor 
Ai Kia Yip, Pei Huang, Keng-Hwee Chiam  Biophysical Journal 
The Layered Structure of Coronary Adventitia under Mechanical Load
Quantitative Modeling and Optimization of Magnetic Tweezers
Presentation transcript:

Volume 103, Issue 10, Pages 2093-2105 (November 2012) Hierarchical Model of Fibrillar Collagen Organization for Interpreting the Second-Order Susceptibility Tensors in Biological Tissue  Adam E. Tuer, Margarete K. Akens, Serguei Krouglov, Daaf Sandkuijl, Brian C. Wilson, Cari M. Whyne, Virginijus Barzda  Biophysical Journal  Volume 103, Issue 10, Pages 2093-2105 (November 2012) DOI: 10.1016/j.bpj.2012.10.019 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 Orientation of fibril(s) in optical setup. (a) Orientation of a collagen fibril is shown in terms of modified spherical coordinates, α and δ, in the laboratory frame, XYZ. The values k→ω and k→2ω indicate the wave-vectors of the incident and second-harmonic electric fields, respectively. The values θ and φ are the polarizer and analyzer angles with respect to the Z axis. (b) Projection of a distribution of fibrils (e.g., two fibrils) on the XZ plane. The value 〈δ〉 is the weighted-average orientation, Δδ1 is the difference between δ1 and 〈δ〉 for fibril 1, and Δδ2 is the difference between δ2 and 〈δ〉 for fibril 2. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 Experimental characteristic PIPO plots. (a, c, e, and i) SHG images of periosteum, rat-tail tendon, dermis, and cornea, respectively. (b, d, f–h, and j–l) PIPO plots of the 2 × 2 pixel arrays indicated on the SHG images (arrows). The scale bar is 10 μm. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 PIPO parameters in tissues with parallel collagen fibril distributions. (Rows a–e) Rat-tail tendon, (rows f–j) periosteum, (rows k–o) tibia cartilage, and (rows p–t) tibia cortical bone, respectively. (a, f, k, and p) White-light images of H&E stained sections. (Black box) 50 × 50 μm2 region similar to the SHG images in panels b, g, l, and q. (c, h, m, and r) Corresponding R-ratio images. Coloring corresponds to the R-ratio value and the color-bar ranges from a ratio of 1.2–3.0. (d, i, n, and s) Corresponding |A|-ratio images, where the coloring ranges from 0 to 0.3. (e, j, o, and t) Corresponding fibril orientation images. Each line indicates the direction of the 〈δ〉. (White space) Absence of a ratio. The scale bar is 10 μm. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 PIPO parameters in tissues with nonparallel collagen fibril distributions. (Rows a–e) Dermis, (rows f–j) cornea, and (rows k–o) vertebrae trabecular bone. (a, f, and k) White-light images of H&E stained sections. (Black box) 50 × 50 μm2 region similar to the SHG images in panels b, g, and l. (c, h, and m) Corresponding R-ratio images. (d, i, and n) Corresponding |A|-ratio images. (e, j, and o) Corresponding fibril orientation images. Each line indicates the direction of the 〈δ〉. All coloring is the same as Fig. 3.The scale bar is 10 μm. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 Occurrence histograms of PIPO parameters. (a) Occurrence histograms of the R ratios for tibia cortical bone (triangle), rat tail tendon (box), periosteum (star), tibia cartilage (cross), dermis (diamond), cornea (circle), and vertebrae trabecular bone (plus). (b) Histogram of R ratios for straight type-I fibrils (triangle), type-II fibrils (cross), and constant-tilt type-I fibrils (circle). (c) Histogram of R ratio showing the effect of in-plane (triangle) and out-of-the-plane (circle) fibrils in rat-tail tendon. (d) Histogram of |A| for parallel (triangle) and nonparallel (circle) fibril distributions. Only fits with an adjusted-R2 value > 0.99 were used for the construction of the histograms. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 Structural visualization of intervertebral disk. (a) Three-dimensional reconstruction of intervertebral disk in the rat vertebrae section where cylinders represent an average fibril at each pixel. Coloring indicates the R ratio for visual clarity (blue is ∼1.45 and red is ∼1.95). (b) H&E image of a similar region of intervertebral disk. (c) SHG image of the disk. (d) SEM image of a similar region of the disk. (Black boxes) 50 × 50 μm2 region. Biophysical Journal 2012 103, 2093-2105DOI: (10.1016/j.bpj.2012.10.019) Copyright © 2012 Biophysical Society Terms and Conditions